		CHE 112 - Extra Practice - Chapter 15 - S21 -	ver 1	Score:/34
Name	:	Class:	Date:	
[6 pt]	1. Ans	wer the following questions about a 0.0250 M solution of HCN. $K_a =$	$= 4.9 \times 10$	-10.
	(a)	What is the pH of the solution? Explain.]	.(a)
	(b)	Will the pH (D)ecrease, (I)ncrease, or (S)tay the same if 0.015 M added? Explain	NaCN is 1	.(b)
	(c)	Will the solubility (D)ecrease, (I)ncrease, or (S)tay the same if 0.025 is added to the solution?	M NaCl 🗆	L(c)
[10 pt]	2. Just a 0.4 abo (a)	The like in lab, you titrate a 50.0 mL solution of 0.050 MPb(NO ₃) ₂ with 050 M solution of KI to form a PbI ₂ precipitate. Answer the following ut the experiment. Write the K_{sp} equation	2.50 mL o g question	f 5

(b)	How many mols of I^- reacted?	2(b)
(c)	How many mols of Pb_2^+ reacted?	2(c)
(d)	What is the M of I^- in the final solution?	2(d)
(e)	What is the M of Pb_2^+ in the final solution?	2(e)
(f)	Calculate the value of K_{sp} for PbI ₂ .	2(f)
(g)	What is the %-Error compared to the theoretical value?	2(g)

3. Write the reaction for each of the following values. Add the reactions together and 3. [5 pt]calculate the new K value. $K_{sp} (Ni(OH)_2(s)) = 5.5 \times 10^{-16}$ $K_f (Ni(OH)_4^-_2 (aq)) = 2.8 \times 10^{12}$

- [8 pt] 5. Given a saturated solution of $Al(OH)_3$ has $[Al^{+3}] = 5.0 \times 10^{-4}$ M and $[OH^{-}] = 1.3 \times 10^{-3}$ M.
 - (a) Write the K_{sp} equation. 5(a) _____
 - (b) What is the value of K_{sp} ? 5(b) _____
 - (c) What is the [Al⁺³] concentration in a saturated solution that has $[OH^-] = 5(c)$ _____ 2.5 × 10⁻⁴ M
 - (d) Would adding 0.25 M Al (NO₃)₃ or 0.25 M NaOH decrease the solubility the 5(d) _____ most. Explain.

Equilibrium Constants at 25°C

TABLE C.1 Acid-	Dissociation Cons	tants at 25°C		
Acid	Formula	K _{a1}	K _{a2}	K _{a3}
Acetic	CH ₃ CO ₂ H	1.8×10^{-5}		
Acetylsalicylic	$C_9H_8O_4$	3.0×10^{-4}		12
Arsenic	H_3AsO_4	5.6×10^{-3}	1.7×10^{-7}	4.0×10^{-12}
Arsenious	H_3AsO_3	6×10^{-10}		
Ascorbic	$C_6H_8O_6$	8.0×10^{-5}		
Benzoic	C ₆ H ₅ CO ₂ H	6.5×10^{-5}		
Boric	H_3BO_3	5.8×10^{-10}		
Carbonic	H_2CO_3	4.3×10^{-7}	5.6×10^{-11}	
Chloroacetic	CH2ClCO2H	1.4×10^{-3}		-
Citric	$C_6H_8O_7$	$7.1 imes 10^{-4}$	1.7×10^{-5}	4.1×10^{-7}
Formic	HCO ₂ H	1.8×10^{-4}		
Hydrazoic	HN ₃	1.9×10^{-5}		
Hydrocyanic	HCN	4.9×10^{-10}		
Hydrofluoric	HF	3.5×10^{-4}		
Hydrogen peroxide	H_2O_2	2.4×10^{-12}		
Hydrosulfuric	H_2S	1.0×10^{-7}	$\sim 10^{-19}$	
Hypobromous	HOBr	2.0×10^{-9}		
Hypochlorous	HOC1	$3.5 imes 10^{-8}$		
Hypoiodous	HOI	2.3×10^{-11}		
Iodic	HIO ₃	1.7×10^{-1}		
Lactic	$HC_3H_5O_3$	$1.4 imes 10^{-4}$		
Nitrous	HNO ₂	$4.5 imes 10^{-4}$		
Oxalic	$H_2C_2O_4$	5.9×10^{-2}	$6.4 imes 10^{-5}$	
Phenol	C ₆ H ₅ OH	$1.3 imes 10^{-10}$		
Phosphoric	H ₃ PO ₄	$7.5 imes10^{-3}$	6.2×10^{-8}	$4.8 imes 10^{-13}$
Phosphorous	H ₃ PO ₃	1.0×10^{-2}	$2.6 imes 10^{-7}$	
Saccharin	C7H5NO3S	2.1×10^{-12}		
Selenic	H ₂ SeO ₄	Very large	1.2×10^{-2}	
Selenious	H ₂ SeO ₃	3.5×10^{-2}	5×10^{-8}	
Sulfuric	H_2SO_4	Very large	1.2×10^{-2}	
Sulfurous	H_2SO_3	1.5×10^{-2}	6.3×10^{-8}	
Tartaric	$C_4H_6O_6$	1.0×10^{-3}	4.6×10^{-5}	
Water	H ₂ O	1.8×10^{-16}		

TABLE C.2	Acid-Dissociation Constants at 25°C for Hydrated Metal Cations			
Cation	Ka	Cation	Ka	
$Fe^{2+}(aq)$	3.2×10^{-10}	$Be^{2+}(aq)$	3×10^{-7}	
$Co^{2+}(aq)$	1.3×10^{-9}	$Al^{3+}(aq)$	1.4×10^{-5}	
$Ni^{2+}(aq)$	2.5×10^{-11}	$Cr^{3+}(aq)$	1.6×10^{-4}	
$Zn^{2+}(aq)$	2.5×10^{-10}	$Fe^{3+}(aq)$	6.3×10^{-3}	

Note: As an example, K_a for Fe²⁺(*aq*) is the equilibrium constant for the reaction

 $\operatorname{Fe}(\operatorname{H}_2\operatorname{O})_6^{2+}(aq) + \operatorname{H}_2\operatorname{O}(l) \Longrightarrow \operatorname{H}_3\operatorname{O}^+(aq) + \operatorname{Fe}(\operatorname{H}_2\operatorname{O})_5(\operatorname{OH})^+(aq)$

Figure 1

TABLE C.3 Base-Dissociation Constants at 25°C		
Base	Formula	Kb
Ammonia	NH ₃	1.8×10^{-5}
Aniline	C ₆ H ₅ NH ₂	4.3×10^{-10}
Codeine	C ₁₈ H ₂₁ NO ₃	1.6×10^{-6}
Dimethylamine	$(CH_3)_2NH$	5.4×10^{-4}
Ethylamine	C ₂ H ₅ NH ₂	$6.4 imes 10^{-4}$
Hydrazine	N_2H_4	8.9×10^{-7}
Hydroxylamine	NH ₂ OH	9.1×10^{-9}
Methylamine	CH ₃ NH ₂	3.7×10^{-4}
Morphine	C17H19NO3	1.6×10^{-6}
Piperidine	$C_{5}H_{11}N$	1.3×10^{-3}
Propylamine	C ₃ H ₇ NH ₂	5.1×10^{-4}
Pyridine	C ₅ H ₅ N	1.8×10^{-9}
Strychnine	C ₂₁ H ₂₂ N ₂ O ₂	1.8×10^{-6}
Trimethylamine	(CH ₃) ₃ N	6.5×10^{-5}

TABLE C.4 Solubility Pro	.4 Solubility Product Constants at 25°C			
Compound	Formula	K _{sp}		
Aluminum hydroxide	Al(OH) ₃	1.9×10^{-33}		
Barium carbonate	BaCO ₃	2.6×10^{-9}		
Barium chromate	BaCrO ₄	$1.2 imes 10^{-10}$		
Barium fluoride	BaF ₂	1.8×10^{-7}		
Barium hydroxide	$Ba(OH)_2$	5.0×10^{-3}		
Barium sulfate	BaSO ₄	1.1×10^{-10}		
Cadmium carbonate	CdCO ₃	6.2×10^{-12}		
Cadmium hydroxide	$Cd(OH)_2$	5.3×10^{-15}		
Calcium carbonate	CaCO ₃	5.0×10^{-9}		
Calcium fluoride	CaF ₂	1.5×10^{-10}		
Calcium hydroxide	$Ca(OH)_2$	4.7×10^{-6}		
Calcium phosphate	$Ca_3(PO_4)_2$	2.1×10^{-33}		
Calcium sulfate	CaSO ₄	7.1×10^{-5}		
Chromium(III) hydroxide	$Cr(OH)_3$	6.7×10^{-31}		
Cobalt(II) hydroxide	$Co(OH)_2$	1.1×10^{-15}		
Copper(I) bromide	CuBr	6.3×10^{-9}		
Copper(I) chloride	CuCl	1.7×10^{-7}		
Copper(II) carbonate	CuCO ₃	2.5×10^{-10}		
Copper(II) hydroxide	$Cu(OH)_2$	$1.6 imes 10^{-19}$		
Copper(II) phosphate	$Cu_3(PO_4)_2$	$1.4 imes 10^{-37}$		
Iron(II) hydroxide	Fe(OH) ₂	4.9×10^{-17}		
Iron(III) hydroxide	Fe(OH) ₃	2.6×10^{-39}		
Lead(II) bromide	PbBr ₂	6.6×10^{-6}		
Lead(II) chloride	PbCl ₂	1.2×10^{-5}		
Lead(II) chromate	PbCrO ₄	2.8×10^{-13}		
Lead(II) iodide	PbI ₂	$8.5 imes 10^{-9}$		
Lead(II) sulfate	PbSO ₄	$1.8 imes 10^{-8}$		
Magnesium carbonate	MgCO ₃	$6.8 imes 10^{-6}$		
Magnesium fluoride	MgF ₂	$7.4 imes 10^{-11}$		
Magnesium hydroxide	$Mg(OH)_2$	$5.6 imes 10^{-12}$		
Manganese(II) carbonate	MnCO ₃	2.2×10^{-11}		
Manganese(II) hydroxide	$Mn(OH)_2$	2.1×10^{-13}		
Mercury(I) bromide	Hg ₂ Br ₂	$6.4 imes 10^{-23}$		

TABLE C.4 Solubility Product Constants at 25°C (continued)				
Compound	Formula	K _{sp}		
Mercury(I) chloride	Hg ₂ Cl ₂	1.4×10^{-18}		
Mercury(I) iodide	Hg_2I_2	5.3×10^{-29}		
Mercury(II) hydroxide	$Hg(OH)_2$	3.1×10^{-26}		
Nickel(II) hydroxide	Ni(OH) ₂	5.5×10^{-16}		
Silver bromide	AgBr	5.4×10^{-13}		
Silver carbonate	Ag ₂ CO ₃	8.4×10^{-12}		
Silver chloride	AgCl	1.8×10^{-10}		
Silver chromate	Ag_2CrO_4	1.1×10^{-12}		
Silver cyanide	AgCN	6.0×10^{-17}		
Silver iodide	AgI	8.5×10^{-17}		
Silver sulfate	Ag_2SO_4	1.2×10^{-5}		
Silver sulfite	Ag_2SO_3	1.5×10^{-14}		
Strontium carbonate	SrCO ₃	5.6×10^{-10}		
Tin(II) hydroxide	$Sn(OH)_2$	5.4×10^{-27}		
Zinc carbonate	ZnCO ₃	1.2×10^{-10}		
Zinc hydroxide	$Zn(OH)_2$	4.1×10^{-17}		

TABLE C.5 Solubility Products in Acid (K _{spa}) at 25°C			
Formula	K _{spa}		
CdS	8×10^{-7}		
CoS	3		
CuS	6×10^{-16}		
FeS	6×10^{2}		
PbS	3×10^{-7}		
MnS	3×10^{10}		
HgS	2×10^{-32}		
NiS	8×10^{-1}		
Ag ₂ S	6×10^{-30}		
SnS	1×10^{-5}		
ZnS	3×10^{-2}		
	oducts in Acid (K _{spa} Formula CdS CoS CuS FeS PbS MnS HgS NiS Ag ₂ S SnS ZnS		

Note: K_{spa} for MS is the equilibrium constant for the reaction

 $MS(s) + 2 H_3O^+(aq) \implies M^{2+}(aq) + H_2S(aq) + 2 H_2O(l)$

We use K_{spa} for metal sulfides rather than K_{sp} because the traditional values of K_{sp} are now known to be inccorrect since they are based on a K_{a2} value for H_2S that is greatly in error (see R. J. Myers, *J. Chem. Educ.*, **1986**, 63, 687–690).

TABLE C.6	6 Formation Constants for Complex lons at 25°C			
Complex Ion	ı K _f	Complex Ion	K _f	
$Ag(CN)_2^{-}$	3.0×10^{20}	Ga(OH) ₄ ⁻	3×10^{39}	
$Ag(NH_3)_2^+$	1.7×10^{7}	$Ni(CN)_4^{2-}$	1.7×10^{30}	
$Ag(S_2O_3)_2^{3-}$	$4.7 imes 10^{13}$	$Ni(NH_3)_6^{2+}$	2.0×10^{8}	
Al(OH) ₄ ⁻	3×10^{33}	$Ni(en)_3^{2+}$	4×10^{17}	
$Be(OH)_4^{2-}$	$4 imes 10^{18}$	Pb(OH) ₃ ⁻	8×10^{13}	
$Cr(OH)_4^-$	$8 imes 10^{29}$	Sn(OH) ₃ ⁻	3×10^{25}	
$Cu(NH_3)_4^{2+}$	5.6×10^{11}	$Zn(CN)_4^{2-}$	4.7×10^{19}	
$Fe(CN)_6^{4-}$	$3 imes 10^{35}$	$Zn(NH_{3})_{4}^{2+}$	7.8×10^{8}	
Fe(CN) ₆ ^{3–}	4×10^{43}	$Zn(OH)_4^{2-}$	3×10^{15}	