Name: \qquad Class: \qquad Date: \qquad
[6 pt] 1. What are the definitions of acid and base according to Arrhenius, Bronsted-Lowry and Lewis?

	Arrhenius	Bronsted-Lowery	Lewis
Acid			
Base			

[4 pt] 2. What is the difference between a strong acid and a weak acid. Write a chemical equation illustrating each.
[3 pt] 3. List the 6 strong acids (Name or Formula)
[6 pt] 4. For a $\mathrm{pH}=8.62$ solution, calculate the following:
(a) $\left[\mathrm{H}^{+}\right]$

4(a) \qquad
(b) pOH \qquad
(c) $\left[\mathrm{OH}^{-}\right]$

$$
4(\mathrm{c})
$$

\qquad
(d) Is the solution (A)cidic, (B)asic, or (N)eutral?
[6 pt] 5. For a $\left[\mathrm{H}^{+}\right]=5.28 \times 10^{-3} \mathrm{M}$ solution, calculate the following:
(a) pH
(b) pOH
(c) $\left[\mathrm{OH}^{-}\right]$

5(c)
\qquad
(d) Is the solution (A)cidic, (B)asic, or (N)eutral?
5(b) \qquad

5(d) \qquad
[6 pt] 6. Buffer Question:
(a) Define the term buffer.
(b) What two classes of compounds are mixed to form a buffer?
(c) What two factors determine how strong a buffer will be?
(d) Give an example of one possible buffer solution.
(e) Assuming a 50/50 mixture what would the pH of the buffer solution be? Explain.
[9 pt] 7. Will the following solution be (A)cidic, (B)asic, or (N)eutral. Write a chemical equation as part of your explaination.
(a) $\mathrm{NH}_{4} \mathrm{Cl}$
(b) $\mathrm{Mg}\left(\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}\right)_{2}$
7(a) \qquad
(c) KNO_{3}
7(c)
[16 pt] 8. A solution of 80.0 mL of $0.25 \mathrm{M} \mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}$ is titrated with 1.0 M KOH . Calculate the pH of the titration at each of the following points. Explain. Show all work on the following page.
(a) Initial pH :
(b) After adding 15.0 mL of KOH :
(c) After adding 20.0 mL of KOH :
(d) After adding 45.0 mL of KOH :

8(a)

8(b)

8(c)

8(d) \qquad

Equilibrium Constants at $25^{\circ} \mathrm{C}$

Acid-Dissociation Constants at $25^{\circ} \mathrm{C}$				
Acid	Formula	$K_{\text {a1 }}$	$K_{\text {a } 2}$	$K_{\text {a } 3}$
Acetic	$\mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{H}$	1.8×10^{-5}		
Acetylsalicylic	$\mathrm{C}_{9} \mathrm{H}_{8} \mathrm{O}_{4}$	3.0×10^{-4}		
Arsenic	$\mathrm{H}_{3} \mathrm{AsO}_{4}$	5.6×10^{-3}	1.7×10^{-7}	4.0×10^{-12}
Arsenious	$\mathrm{H}_{3} \mathrm{AsO}_{3}$	6×10^{-10}		
Ascorbic	$\mathrm{C}_{6} \mathrm{H}_{8} \mathrm{O}_{6}$	8.0×10^{-5}		
Benzoic	$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CO}_{2} \mathrm{H}$	6.5×10^{-5}		
Boric	$\mathrm{H}_{3} \mathrm{BO}_{3}$	5.8×10^{-10}		
Carbonic	$\mathrm{H}_{2} \mathrm{CO}_{3}$	4.3×10^{-7}	5.6×10^{-11}	
Chloroacetic	$\mathrm{CH}_{2} \mathrm{ClCO}_{2} \mathrm{H}$	1.4×10^{-3}		
Citric	$\mathrm{C}_{6} \mathrm{H}_{8} \mathrm{O}_{7}$	7.1×10^{-4}	1.7×10^{-5}	4.1×10^{-7}
Formic	$\mathrm{HCO}_{2} \mathrm{H}$	1.8×10^{-4}		
Hydrazoic	HN_{3}	1.9×10^{-5}		
Hydrocyanic	HCN	4.9×10^{-10}		
Hydrofluoric	HF	3.5×10^{-4}		
Hydrogen peroxide	$\mathrm{H}_{2} \mathrm{O}_{2}$	2.4×10^{-12}		
Hydrosulfuric	$\mathrm{H}_{2} \mathrm{~S}$	1.0×10^{-7}	$\sim 10^{-19}$	
Hypobromous	HOBr	2.0×10^{-9}		
Hypochlorous	HOCl	3.5×10^{-8}		
Hypoiodous	HOI	2.3×10^{-11}		
Iodic	HIO_{3}	1.7×10^{-1}		
Lactic	$\mathrm{HC}_{3} \mathrm{H}_{5} \mathrm{O}_{3}$	1.4×10^{-4}		
Nitrous	HNO_{2}	4.5×10^{-4}		
Oxalic	$\mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4}$	5.9×10^{-2}	6.4×10^{-5}	
Phenol	$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{OH}$	1.3×10^{-10}		
Phosphoric	$\mathrm{H}_{3} \mathrm{PO}_{4}$	7.5×10^{-3}	6.2×10^{-8}	4.8×10^{-13}
Phosphorous	$\mathrm{H}_{3} \mathrm{PO}_{3}$	1.0×10^{-2}	2.6×10^{-7}	
Saccharin	$\mathrm{C}_{7} \mathrm{H}_{5} \mathrm{NO}_{3} \mathrm{~S}$	2.1×10^{-12}		
Selenic	$\mathrm{H}_{2} \mathrm{SeO}_{4}$	Very large	1.2×10^{-2}	
Selenious	$\mathrm{H}_{2} \mathrm{SeO}_{3}$	3.5×10^{-2}	5×10^{-8}	
Sulfuric	$\mathrm{H}_{2} \mathrm{SO}_{4}$	Very large	1.2×10^{-2}	
Sulfurous	$\mathrm{H}_{2} \mathrm{SO}_{3}$	1.5×10^{-2}	6.3×10^{-8}	
Tartaric	$\mathrm{C}_{4} \mathrm{H}_{6} \mathrm{O}_{6}$	1.0×10^{-3}	4.6×10^{-5}	
Water	$\mathrm{H}_{2} \mathrm{O}$	1.8×10^{-16}		

TABLE C.2 Acid-Dissociation Constants at $25^{\circ} \mathrm{C}$ for Hydrated Metal Cations

Cation	$\boldsymbol{K}_{\mathbf{a}}$	$\mathbf{C a t i o n}$	$\boldsymbol{K}_{\mathbf{a}}$
$\mathrm{Fe}^{2+}(a q)$	3.2×10^{-10}	$\mathrm{Be}^{2+}(a q)$	3×10^{-7}
$\mathrm{Co}^{2+}(a q)$	1.3×10^{-9}	$\mathrm{Al}^{3+}(a q)$	1.4×10^{-5}
$\mathrm{Ni}^{2+}(a q)$	2.5×10^{-11}	$\mathrm{Cr}^{3+}(a q)$	1.6×10^{-4}
$\mathrm{Zn}^{2+}(a q)$	2.5×10^{-10}	$\mathrm{Fe}^{3+}(a q)$	6.3×10^{-3}

Note: As an example, K_{a} for $\mathrm{Fe}^{2+}(a q)$ is the equilibrium constant for the reaction

$$
\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}{ }^{2+}(a q)+\mathrm{H}_{2} \mathrm{O}(l) \rightleftharpoons \mathrm{H}_{3} \mathrm{O}^{+}(a q)+\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{5}(\mathrm{OH})^{+}(a q)
$$

Figure 1

TABLE C.3	Base-Dissociation Constants at $\mathbf{2 5}^{\circ} \mathrm{C}$	
Base	Formula	$\mathbf{K}_{\mathbf{b}}$
Ammonia	NH_{3}	1.8×10^{-5}
Aniline	$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NH}_{2}$	4.3×10^{-10}
Codeine	$\mathrm{C}_{18} \mathrm{H}_{21} \mathrm{NO}_{3}$	1.6×10^{-6}
Dimethylamine	$\left(\mathrm{CH}_{3} \mathrm{~N}_{2} \mathrm{NH}^{2}\right.$	5.4×10^{-4}
Ethylamine	$\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{NH}_{2}$	6.4×10^{-4}
Hydrazine	$\mathrm{N}_{2} \mathrm{H}_{4}$	8.9×10^{-7}
Hydroxylamine	$\mathrm{NH}_{2} \mathrm{OH}$	9.1×10^{-9}
Methylamine	$\mathrm{CH}_{3} \mathrm{NH}_{2}$	3.7×10^{-4}
Morphine	$\mathrm{C}_{17} \mathrm{H}_{19} \mathrm{NO}_{3}$	1.6×10^{-6}
Piperidine	$\mathrm{C}_{5} \mathrm{H}_{11} \mathrm{~N}$	1.3×10^{-3}
Propylamine	$\mathrm{C}_{3} \mathrm{H}_{7} \mathrm{NH}_{2}$	5.1×10^{-4}
Pyridine	$\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}$	1.8×10^{-9}
Strychnine	$\mathrm{C}_{21} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{2}$	1.8×10^{-6}
Trimethylamine	$\left(\mathrm{CH}_{3}\right)_{3} \mathrm{~N}$	6.5×10^{-5}

TABLE C. 4 Solubility	Solubility Product Constants at $25^{\circ} \mathrm{C}$	
Compound	Formula	$K_{\text {sp }}$
Aluminum hydroxide	$\mathrm{Al}(\mathrm{OH})_{3}$	1.9×10^{-33}
Barium carbonate	BaCO_{3}	2.6×10^{-9}
Barium chromate	BaCrO_{4}	1.2×10^{-10}
Barium fluoride	BaF_{2}	1.8×10^{-7}
Barium hydroxide	$\mathrm{Ba}(\mathrm{OH})_{2}$	5.0×10^{-3}
Barium sulfate	BaSO_{4}	1.1×10^{-10}
Cadmium carbonate	CdCO_{3}	6.2×10^{-12}
Cadmium hydroxide	$\mathrm{Cd}(\mathrm{OH})_{2}$	5.3×10^{-15}
Calcium carbonate	CaCO_{3}	5.0×10^{-9}
Calcium fluoride	CaF_{2}	1.5×10^{-10}
Calcium hydroxide	$\mathrm{Ca}(\mathrm{OH})_{2}$	4.7×10^{-6}
Calcium phosphate	$\mathrm{Ca}_{3}\left(\mathrm{PO}_{4}\right)_{2}$	2.1×10^{-33}
Calcium sulfate	CaSO_{4}	7.1×10^{-5}
Chromium(III) hydroxide	$\mathrm{Cr}(\mathrm{OH})_{3}$	6.7×10^{-31}
Cobalt(II) hydroxide	$\mathrm{Co}(\mathrm{OH})_{2}$	1.1×10^{-15}
Copper(I) bromide	CuBr	6.3×10^{-9}
Copper(I) chloride	CuCl	1.7×10^{-7}
Copper(II) carbonate	CuCO_{3}	2.5×10^{-10}
Copper(II) hydroxide	$\mathrm{Cu}(\mathrm{OH})_{2}$	1.6×10^{-19}
Copper(II) phosphate	$\mathrm{Cu}_{3}\left(\mathrm{PO}_{4}\right)_{2}$	1.4×10^{-37}
Iron(II) hydroxide	$\mathrm{Fe}(\mathrm{OH})_{2}$	4.9×10^{-17}
Iron(III) hydroxide	$\mathrm{Fe}(\mathrm{OH})_{3}$	2.6×10^{-39}
Lead(II) bromide	PbBr_{2}	6.6×10^{-6}
Lead(II) chloride	PbCl_{2}	1.2×10^{-5}
Lead(II) chromate	PbCrO_{4}	2.8×10^{-13}
Lead(II) iodide	PbI_{2}	8.5×10^{-9}
Lead(II) sulfate	PbSO_{4}	1.8×10^{-8}
Magnesium carbonate	MgCO_{3}	6.8×10^{-6}
Magnesium fluoride	MgF_{2}	7.4×10^{-11}
Magnesium hydroxide	$\mathrm{Mg}(\mathrm{OH})_{2}$	5.6×10^{-12}
Manganese(II) carbonate	MnCO_{3}	2.2×10^{-11}
Manganese(II) hydroxide	$\mathrm{Mn}(\mathrm{OH})_{2}$	2.1×10^{-13}
Mercury(I) bromide	$\mathrm{Hg}_{2} \mathrm{Br}_{2}$	6.4×10^{-23}

Figure 2

TABL= C. 4 Solubility Product Constants at $25^{\circ} \mathrm{C}$ (continued)

Compound	Formula	$\boldsymbol{K}_{\text {sp }}$
Mercury(I) chloride	$\mathrm{Hg}_{2} \mathrm{Cl}_{2}$	1.4×10^{-18}
Mercury(I) iodide	$\mathrm{Hg}_{2} \mathrm{I}_{2}$	5.3×10^{-29}
Mercury(II) hydroxide	$\mathrm{Hg}(\mathrm{OH})_{2}$	3.1×10^{-26}
Nickel(II) hydroxide	$\mathrm{Ni}(\mathrm{OH})_{2}$	5.5×10^{-16}
Silver bromide	AgBr	5.4×10^{-13}
Silver carbonate	$\mathrm{Ag}_{2} \mathrm{CO}_{3}$	8.4×10^{-12}
Silver chloride	$\mathrm{AgCl}^{\mathrm{Ag}_{2} \mathrm{CrO}_{4}}$	1.8×10^{-10}
Silver chromate	AgCN^{2}	1.1×10^{-12}
Silver cyanide	$\mathrm{AgI}^{\mathrm{Ag}_{2} \mathrm{SO}_{4}}$	6.0×10^{-17}
Silver iodide	$\mathrm{Ag}_{2} \mathrm{SO}_{3}$	8.5×10^{-17}
Silver sulfate	SrCO_{3}	1.2×10^{-5}
Silver sulfite	$\mathrm{Sn}(\mathrm{OH})_{2}$	1.5×10^{-14}
Strontium carbonate	ZnCO	5.6×10^{-10}
Tin(II) hydroxide	$\mathrm{Zn}(\mathrm{OH})_{2}$	5.4×10^{-27}
Zinc carbonate		1.2×10^{-10}
Zinc hydroxide		4.1×10^{-17}

TABLE C. 5	Solubility Products in Acid $\left(K_{\text {spal }}\right)$ at $\mathbf{2 5}{ }^{\circ} \mathrm{C}$	
Compound	Formula	$\boldsymbol{K}_{\text {spa }}$
Cadmium sulfide	CdS	8×10^{-7}
Cobalt(II) sulfide	CoS	3
Copper(II) sulfide	CuS	6×10^{-16}
Iron(II) sulfide	FeS	6×10^{2}
Lead(II) sulfide	PbS	3×10^{-7}
Manganese(II) sulfide	MnS	3×10^{10}
Mercury(II) sulfide	HgS	2×10^{-32}
Nickel(II) sulfide	NiS	8×10^{-1}
Silver sulfide	$\mathrm{Ag}_{2} \mathrm{~S}$	6×10^{-30}
Tin(II) sulfide	SnS	1×10^{-5}
Zinc sulfide	ZnS	3×10^{-2}

Note: $K_{\text {spa }}$ for MS is the equilibrium constant for the reaction

$$
\mathrm{MS}(s)+2 \mathrm{H}_{3} \mathrm{O}^{+}(a q) \rightleftharpoons \mathrm{M}^{2+}(a q)+\mathrm{H}_{2} \mathrm{~S}(a q)+2 \mathrm{H}_{2} \mathrm{O}(l)
$$

We use $K_{\text {spa }}$ for metal sulfides rather than $K_{\text {sp }}$ because the traditional values of $K_{\text {sp }}$ are now known to be inccorrect since they are based on a $K_{\mathrm{a} 2}$ value for $\mathrm{H}_{2} \mathrm{~S}$ that is greatly in error (see R. J. Myers, J. Chem. Educ., 1986, 63, 687-690).

TABLE C. 6 Formation Constants for Complex lons at $25^{\circ} \mathrm{C}$

Complex Ion	$\boldsymbol{K}_{\mathbf{f}}$	Complex Ion	$\boldsymbol{K}_{\mathbf{f}}$
$\mathrm{Ag}(\mathrm{CN})_{2}{ }^{-}$	3.0×10^{20}	$\mathrm{Ga}(\mathrm{OH})_{4}{ }^{-}$	3×10^{39}
$\mathrm{Ag}\left(\mathrm{NH}_{3}\right)_{2}{ }^{+}$	1.7×10^{7}	$\mathrm{Ni}(\mathrm{CN})_{4}{ }^{2-}$	1.7×10^{30}
$\mathrm{Ag}\left(\mathrm{S}_{2} \mathrm{O}_{3}\right)_{2}{ }^{3-}$	4.7×10^{13}	$\mathrm{Ni}\left(\mathrm{NH}_{3}\right)_{6}{ }^{2+}$	2.0×10^{8}
$\mathrm{Al}(\mathrm{OH})_{4} 4^{-}$	3×10^{33}	$\mathrm{Ni}(\mathrm{en})_{3}{ }^{2+}$	4×10^{17}
$\mathrm{Be}(\mathrm{OH})_{4}{ }^{2-}$	4×10^{18}	$\mathrm{~Pb}(\mathrm{OH})_{3}{ }^{-}$	8×10^{13}
$\mathrm{Cr}(\mathrm{OH})_{4}{ }^{-}$	8×10^{29}	$\mathrm{Sn}(\mathrm{OH})_{3}{ }^{-}$	3×10^{25}
$\mathrm{Cu}(\mathrm{NH})_{4} 4^{2+}$	5.6×10^{11}	$\mathrm{Zn}(\mathrm{CN})_{4}{ }^{2-}$	4.7×10^{19}
$\mathrm{Fe}(\mathrm{CN})_{6}{ }^{4-}$	3×10^{35}	$\mathrm{Zn}\left(\mathrm{NH}_{3}\right)_{4}{ }^{2+}$	7.8×10^{8}
$\mathrm{Fe}(\mathrm{CN})_{6}{ }^{3-}$	4×10^{43}	$\mathrm{Zn}(\mathrm{OH})_{4}{ }^{2-}$	3×10^{15}

Figure 3

