Name:	Class:	Date:

[6 pt] 1. What are the definitions of acid and base according to Arrhenius, Bronsted-Lowry and Lewis?

	Arrhenius	Bronsted-Lowery	Lewis
Acid			
Base			

[4 pt]2. What is the difference between a strong acid and a weak acid. Write a chemical equation illustrating each.

[3 pt] 3. List the 6 strong acids (Name or Formula)

[6 pt] 4. For a pH = 8.62 solution, calculate the following:

[6 pt]

(a) $[H^+]$	4(a)
(b) pOH	4(b)
(c) $[OH^-]$	4(c)
(d) Is the solution (A)cidic, (B)asic, or (N)eutral?	4(d)
5. For a $[H^+] = 5.28 \times 10^{-3}$ M solution, calculate the following:	
(a) pH	5(a)
(b) pOH	5(b)
(c) $[OH^-]$	5(c)
(d) Is the solution (A)cidic, (B)asic, or (N)eutral?	5(d)

[6 pt] 6. Buffer Question:

- (a) Define the term buffer.
- (b) What two classes of compounds are mixed to form a buffer?
- (c) What two factors determine how strong a buffer will be?
- (d) Give an example of one possible buffer solution.
- (e) Assuming a 50/50 mixture what would the pH of the buffer solution be? Explain.
- [9 pt] 7. Will the following solution be (A)cidic, (B)asic, or (N)eutral. Write a chemical equation as part of your explaination.
 - (a) NH_4Cl

(b) $Mg(C_2H_3O_2)_2$

(c) KNO_3

7(a) _____

7(b) _____

7(c) _____

 $[16 pt] 8. A solution of 80.0 mL of 0.25 M HC_2H_3O_2 is titrated with 1.0 M KOH. Calculate the pH of the titration at each of the following points. Explain. Show all work on the following page.$

(a) Initial pH:	8(a)
(b) After adding 15.0 mL of KOH:	8(b)
(c) After adding 20.0 mL of KOH:	8(c)
(d) After adding 45.0 mL of KOH:	8(d)

Equilibrium Constants at 25°C

TABLE C.1 Acid-Dissociation Constants at 25°C				
Acid	Formula	K _{a1}	K _{a2}	K _{a3}
Acetic	CH ₃ CO ₂ H	1.8×10^{-5}		
Acetylsalicylic	$C_9H_8O_4$	3.0×10^{-4}		12
Arsenic	H_3AsO_4	5.6×10^{-3}	1.7×10^{-7}	4.0×10^{-12}
Arsenious	H_3AsO_3	6×10^{-10}		
Ascorbic	$C_6H_8O_6$	8.0×10^{-5}		
Benzoic	C ₆ H ₅ CO ₂ H	6.5×10^{-5}		
Boric	H ₃ BO ₃	5.8×10^{-10}		
Carbonic	H_2CO_3	4.3×10^{-7}	5.6×10^{-11}	
Chloroacetic	CH2ClCO2H	1.4×10^{-3}		-
Citric	$C_6H_8O_7$	$7.1 imes 10^{-4}$	1.7×10^{-5}	4.1×10^{-7}
Formic	HCO ₂ H	1.8×10^{-4}		
Hydrazoic	HN ₃	1.9×10^{-5}		
Hydrocyanic	HCN	4.9×10^{-10}		
Hydrofluoric	HF	3.5×10^{-4}		
Hydrogen peroxide	H_2O_2	2.4×10^{-12}		
Hydrosulfuric	H_2S	1.0×10^{-7}	$\sim 10^{-19}$	
Hypobromous	HOBr	2.0×10^{-9}		
Hypochlorous	HOC1	$3.5 imes 10^{-8}$		
Hypoiodous	HOI	2.3×10^{-11}		
Iodic	HIO ₃	1.7×10^{-1}		
Lactic	$HC_3H_5O_3$	$1.4 imes 10^{-4}$		
Nitrous	HNO ₂	$4.5 imes 10^{-4}$		
Oxalic	$H_2C_2O_4$	5.9×10^{-2}	$6.4 imes 10^{-5}$	
Phenol	C ₆ H ₅ OH	$1.3 imes 10^{-10}$		
Phosphoric	H ₃ PO ₄	$7.5 imes10^{-3}$	6.2×10^{-8}	$4.8 imes 10^{-13}$
Phosphorous	H ₃ PO ₃	1.0×10^{-2}	$2.6 imes 10^{-7}$	
Saccharin	C7H5NO3S	2.1×10^{-12}		
Selenic	H ₂ SeO ₄	Very large	1.2×10^{-2}	
Selenious	H ₂ SeO ₃	3.5×10^{-2}	5×10^{-8}	
Sulfuric	H_2SO_4	Very large	1.2×10^{-2}	
Sulfurous	H_2SO_3	1.5×10^{-2}	6.3×10^{-8}	
Tartaric	$C_4H_6O_6$	1.0×10^{-3}	4.6×10^{-5}	
Water	H ₂ O	1.8×10^{-16}		

TABLE C.2	Acid-Dissociation Constants at 25°C for Hydrated Metal Cations		
Cation	Ka	Cation	Ka
$Fe^{2+}(aq)$	3.2×10^{-10}	$Be^{2+}(aq)$	3×10^{-7}
$Co^{2+}(aq)$	1.3×10^{-9}	$Al^{3+}(aq)$	1.4×10^{-5}
$Ni^{2+}(aq)$	2.5×10^{-11}	$Cr^{3+}(aq)$	1.6×10^{-4}
$Zn^{2+}(aq)$	2.5×10^{-10}	$Fe^{3+}(aq)$	6.3×10^{-3}

Note: As an example, K_a for Fe²⁺(*aq*) is the equilibrium constant for the reaction

 $\operatorname{Fe}(\operatorname{H}_2\operatorname{O})_6^{2+}(aq) + \operatorname{H}_2\operatorname{O}(l) \Longrightarrow \operatorname{H}_3\operatorname{O}^+(aq) + \operatorname{Fe}(\operatorname{H}_2\operatorname{O})_5(\operatorname{OH})^+(aq)$

Figure 1

TABLE C.3 Base-Dissociation Constants at 25°C		
Base	Formula	Kb
Ammonia	NH ₃	1.8×10^{-5}
Aniline	C ₆ H ₅ NH ₂	4.3×10^{-10}
Codeine	C ₁₈ H ₂₁ NO ₃	1.6×10^{-6}
Dimethylamine	$(CH_3)_2NH$	5.4×10^{-4}
Ethylamine	C ₂ H ₅ NH ₂	$6.4 imes 10^{-4}$
Hydrazine	N_2H_4	8.9×10^{-7}
Hydroxylamine	NH ₂ OH	9.1×10^{-9}
Methylamine	CH ₃ NH ₂	3.7×10^{-4}
Morphine	C17H19NO3	1.6×10^{-6}
Piperidine	$C_{5}H_{11}N$	1.3×10^{-3}
Propylamine	C ₃ H ₇ NH ₂	5.1×10^{-4}
Pyridine	C ₅ H ₅ N	1.8×10^{-9}
Strychnine	C ₂₁ H ₂₂ N ₂ O ₂	1.8×10^{-6}
Trimethylamine	(CH ₃) ₃ N	6.5×10^{-5}

TABLE C.4 Solubility Pro	BLE C.4 Solubility Product Constants at 25°C		
Compound	Formula	K _{sp}	
Aluminum hydroxide	Al(OH) ₃	1.9×10^{-33}	
Barium carbonate	BaCO ₃	2.6×10^{-9}	
Barium chromate	BaCrO ₄	$1.2 imes 10^{-10}$	
Barium fluoride	BaF ₂	1.8×10^{-7}	
Barium hydroxide	$Ba(OH)_2$	5.0×10^{-3}	
Barium sulfate	BaSO ₄	1.1×10^{-10}	
Cadmium carbonate	CdCO ₃	6.2×10^{-12}	
Cadmium hydroxide	$Cd(OH)_2$	5.3×10^{-15}	
Calcium carbonate	CaCO ₃	5.0×10^{-9}	
Calcium fluoride	CaF ₂	1.5×10^{-10}	
Calcium hydroxide	$Ca(OH)_2$	4.7×10^{-6}	
Calcium phosphate	$Ca_3(PO_4)_2$	2.1×10^{-33}	
Calcium sulfate	CaSO ₄	7.1×10^{-5}	
Chromium(III) hydroxide	$Cr(OH)_3$	6.7×10^{-31}	
Cobalt(II) hydroxide	$Co(OH)_2$	1.1×10^{-15}	
Copper(I) bromide	CuBr	6.3×10^{-9}	
Copper(I) chloride	CuCl	1.7×10^{-7}	
Copper(II) carbonate	CuCO ₃	2.5×10^{-10}	
Copper(II) hydroxide	$Cu(OH)_2$	$1.6 imes 10^{-19}$	
Copper(II) phosphate	$Cu_3(PO_4)_2$	$1.4 imes 10^{-37}$	
Iron(II) hydroxide	Fe(OH) ₂	4.9×10^{-17}	
Iron(III) hydroxide	$Fe(OH)_3$	2.6×10^{-39}	
Lead(II) bromide	PbBr ₂	6.6×10^{-6}	
Lead(II) chloride	PbCl ₂	1.2×10^{-5}	
Lead(II) chromate	PbCrO ₄	2.8×10^{-13}	
Lead(II) iodide	PbI ₂	$8.5 imes 10^{-9}$	
Lead(II) sulfate	PbSO ₄	$1.8 imes 10^{-8}$	
Magnesium carbonate	MgCO ₃	$6.8 imes 10^{-6}$	
Magnesium fluoride	MgF ₂	$7.4 imes 10^{-11}$	
Magnesium hydroxide	$Mg(OH)_2$	$5.6 imes 10^{-12}$	
Manganese(II) carbonate	MnCO ₃	2.2×10^{-11}	
Manganese(II) hydroxide	$Mn(OH)_2$	2.1×10^{-13}	
Mercury(I) bromide	Hg ₂ Br ₂	$6.4 imes 10^{-23}$	

TABLE C.4 Solubility Product Constants at 25°C (continued)			
Compound	Formula	K _{sp}	
Mercury(I) chloride	Hg ₂ Cl ₂	1.4×10^{-18}	
Mercury(I) iodide	Hg_2I_2	5.3×10^{-29}	
Mercury(II) hydroxide	$Hg(OH)_2$	3.1×10^{-26}	
Nickel(II) hydroxide	Ni(OH) ₂	5.5×10^{-16}	
Silver bromide	AgBr	5.4×10^{-13}	
Silver carbonate	Ag ₂ CO ₃	8.4×10^{-12}	
Silver chloride	AgCl	1.8×10^{-10}	
Silver chromate	Ag_2CrO_4	1.1×10^{-12}	
Silver cyanide	AgCN	6.0×10^{-17}	
Silver iodide	AgI	8.5×10^{-17}	
Silver sulfate	Ag_2SO_4	1.2×10^{-5}	
Silver sulfite	Ag_2SO_3	1.5×10^{-14}	
Strontium carbonate	SrCO ₃	5.6×10^{-10}	
Tin(II) hydroxide	$Sn(OH)_2$	5.4×10^{-27}	
Zinc carbonate	ZnCO ₃	1.2×10^{-10}	
Zinc hydroxide	$Zn(OH)_2$	4.1×10^{-17}	

TABLE C.5 Solubility Products in Acid (K _{spa}) at 25°C			
Formula	K _{spa}		
CdS	8×10^{-7}		
CoS	3		
CuS	6×10^{-16}		
FeS	6×10^{2}		
PbS	3×10^{-7}		
MnS	3×10^{10}		
HgS	2×10^{-32}		
NiS	8×10^{-1}		
Ag ₂ S	6×10^{-30}		
SnS	1×10^{-5}		
ZnS	3×10^{-2}		
	oducts in Acid (K _{spa} Formula CdS CoS CuS FeS PbS MnS HgS NiS Ag ₂ S SnS ZnS		

Note: K_{spa} for MS is the equilibrium constant for the reaction

 $MS(s) + 2 H_3O^+(aq) \implies M^{2+}(aq) + H_2S(aq) + 2 H_2O(l)$

We use K_{spa} for metal sulfides rather than K_{sp} because the traditional values of K_{sp} are now known to be inccorrect since they are based on a K_{a2} value for H_2S that is greatly in error (see R. J. Myers, *J. Chem. Educ.*, **1986**, 63, 687–690).

TABLE C.6	Formation Constants for Complex lons at 25°C			
Complex Ion	ı K _f	Complex Ion	K _f	
$Ag(CN)_2^{-}$	3.0×10^{20}	Ga(OH) ₄ ⁻	3×10^{39}	
$Ag(NH_3)_2^+$	1.7×10^{7}	$Ni(CN)_4^{2-}$	1.7×10^{30}	
$Ag(S_2O_3)_2^{3-}$	$4.7 imes 10^{13}$	$Ni(NH_3)_6^{2+}$	2.0×10^{8}	
Al(OH) ₄ ⁻	3×10^{33}	$Ni(en)_3^{2+}$	4×10^{17}	
$Be(OH)_4^{2-}$	$4 imes 10^{18}$	Pb(OH) ₃ ⁻	8×10^{13}	
$Cr(OH)_4^-$	$8 imes 10^{29}$	Sn(OH) ₃ ⁻	3×10^{25}	
$Cu(NH_3)_4^{2+}$	5.6×10^{11}	$Zn(CN)_4^{2-}$	4.7×10^{19}	
$Fe(CN)_6^{4-}$	$3 imes 10^{35}$	$Zn(NH_{3})_{4}^{2+}$	7.8×10^{8}	
Fe(CN) ₆ ^{3–}	4×10^{43}	$Zn(OH)_4^{2-}$	3×10^{15}	