OER 20.1

CHE 112 - Homework - Ch 20b Nuclear Stability Score: ____/35

Name	: _	Date:
[3 pt]	1.	Explain how protons can exist in the nucleus despite the obvious proton-proton repulsion that should occur because they have the same charge.
[6 pt]	2.	What is meant by the term "band of stability" (or "belt of stability")? Why do nuclide's that are "neutron-rich" (above the band) emit β particles while nuclide's that are "neutron-poor" (below the band) emit α particles, positrons or undergo electron capture. Use nuclear reaction to illustrate how each type of decay works.
		(a) Band of Stability:
		(b) Neutron Rich Decay (include an example for β -emission):
		(c) Neutron Poor Decay (include an example for α -emission, positron-emission and electron capture):
[4 pt]	3.	Of the two isotopes of Iodine, 136 I and 122 I, one decays by β emission and one by positron emission. Which is which? Explain. Additionally write a complete and balanced reaction for each decay.

- [8 pt] 4. Write the balanced nuclear equations for the following processes:
 - (a) Alpha emission of ¹⁵⁷Re
 - (b) Electron capture of 138 Sm
 - (c) Beta emission of 188 W
 - (d) Positron emission of ¹⁶⁵Ta
- [4 pt] 5. Are the following reactions examples of: Alpha emission, Electron capture, Beta emission, or Positron emission?

(a) $^{157}\text{Eu} \longrightarrow ^{157}\text{Gd} + _{-1}^{0}\text{e}$

5(a) _____

(b) $^{126}\text{Ba} + ^{0}_{-1}\text{e} \longrightarrow ^{126}\text{Cs}$

5(b) _____

(c) $^{146}\mathrm{Sm} \longrightarrow ^{142}\mathrm{Nd} + {}_{2}^{4}\mathrm{He}$

5(c) _____

(d) $^{125}\text{Ba} \longrightarrow ^{125}\text{Cs} + ^{0}\text{e}$

5(d) _____

[5 pt] 6. Identify the decay process that occurred in each of the following steps in the decay chain of Uranium.

[5 pt] 7. Radon-222 decays via 3 alpha emissions and 2 beta emissions. Draw the decay chain (just show the major elements produced (not the emission products).