CHE 112 - Homework - Ch 17d Reaction Mechanisms

Score: ____/40

Name: _____

Date: _____

- [10 pt] 1. Are the following statements (T)rue or (F)alse? For the false statements, correct them so that they are true.
 - 1(a) The fastest step in a reaction is called the rate-determining step.
- 1(a) _____
- 1(b) The sum of all the elementary steps in a reaction must sum to give the overall reaction. 1(b) ______
- 1(c) Reaction intermediates are destroyed in one step and created in another. 1(c) ______
- 1(d) The coefficients of the overall reaction are the same as the exponents in the rate law. 1(d) ______
- 1(e) A catalyst speeds up a reaction by providing an alternative, higher energy pathway. 1(e) ______
- [5 pt] 2. The following mechanism has been proposed for the reaction of nitrogen monoxide and chlorine:

- 2(a) Write the overall reaction.
- 2(b) Identify any reaction intermediates and/or catalysts.
- 2(c) What is the molecularity of each elementary step?
- [5 pt] 3. The reaction between nitrogen dioxide and fluorine has a second order rate law: rate = $k[NO_2][F_2]$ and is believed to react via the following reaction mechanism:

$$\begin{array}{lll} Step \ 1: & \underline{\hspace{1cm}} NO_2(g) + \underline{\hspace{1cm}} F_2(g) \longrightarrow \underline{\hspace{1cm}} NO_2F(g) + \underline{\hspace{1cm}} F(g) \\ Step \ 2: & \underline{\hspace{1cm}} F(g) + \underline{\hspace{1cm}} NO_2(g) \longrightarrow \underline{\hspace{1cm}} NO_2F(g) \end{array}$$

- 3(a) Write the overall reaction.
- 3(b) Identify any reaction intermediates and/or catalysts.
- 3(c) Which step is the rate limiting step. Explain.

[5 pt] 4. Given the following reaction mechanism:

$$\begin{array}{lll} \text{Step 1:} & \underline{\hspace{1cm}} O_3(g) + \underline{\hspace{1cm}} NO(g) \longrightarrow \underline{\hspace{1cm}} O_2(g) + \underline{\hspace{1cm}} NO_2(g) \\ \text{Step 2:} & \underline{\hspace{1cm}} NO_2(g) + \underline{\hspace{1cm}} O(g) \longrightarrow \underline{\hspace{1cm}} O_2(g) + \underline{\hspace{1cm}} NO(g) \end{array}$$

- 4(a) Write the overall reaction.
- 4(b) Identify any reaction intermediates and/or catalysts.
- 4(c) Assuming the first step is slow, write the rate law.

[5 pt] 5. Given the following reaction mechanism:

Proposed Mechanism:

(1)
$$HBr(g) + O_2(g) \xrightarrow{k_1} HOOBr(g)$$
 (Slow)
(2) $HOOBr(g) + HBr(g) \xrightarrow{k_2} 2 HOBr(g)$ (Fast)
(3) $HOBr(g) + HBr(g) \xrightarrow{k_3} H_2O(g) + Br_2(g)$ (Fast)
(4) $HOBr(g) + HBr(g) \xrightarrow{k_4} H_2O(g) + Br_2(g)$ (Fast)

- 5(a) Write the overall reaction.
- 5(b) Identify any reaction intermediates and/or catalysts.
- 5(c) Assuming the first step is slow, write the rate law.

[5 pt] 6. The following mechanism has been proposed for a reaction.

$$\text{Step 1: } NO(g) + NO(g) \xrightarrow{k_1} N_2O_2(g) \quad \text{ (fast equilibrium)}$$

$$\text{Step 2: } N_2 O_2(g) + O_2(g) \xrightarrow{k_2} 2NO_2(g) \quad (slow)$$

- 6(a) Write the balance equation for overall reaction.
- 6(b) Identify any reaction intermediates and/or catalysts.
- 6(c) What is the rate law?
- 6(d) What is the rate constant?
- [5 pt] 7. The following mechanism has been proposed for the formation of Hydrogen Iodide gas HI.

Step 1: ___I_2(g)
$$\frac{k_1}{k_{-1}}$$
 _2_I(g) (Fast, Equilibrium)

Step 2: ___H_2(g) + ___I(g)
$$\xrightarrow[k_{-2}]{k_2}$$
 ___H_2I(g) (Fast, Equilibrium)

Step 3: ___H_2I(g) + ___I(g)
$$\xrightarrow{k_3}$$
 _2_HI(g) (slooooooooooooo)

- 7(a) Write the balance equation for overall reaction.
- $7(\mathrm{b})$ Identify any reaction intermediates and/or catalysts.
- 7(c) What is the rate law?
- 7(d) What is the rate constant?