OER 17.2 and 17.5 $\,$

${\it CHE~112-Homework-Ch~17c} \\ {\it Arrhenius~Equation~and~Collision~Theory}$

Collision Theory Score: ____/30

Name	e: _	Date:
[8 pt]		ow any required calculations on the back page or another sheet of paper. What are 4 ways to speed up a reaction. Explain how each speeds up a reaction. Include a sketch where appropriate to illustrate your explainations (a)
		(b)
		(c)
		(d)
[2 pt]	2.	Why don't all collisions between reactant molecules lead to a chemical equation (2 answers)?
[7 pt]	3.	For the reaction $\underline{\hspace{0.1cm}} H_2(g) + \underline{\hspace{0.1cm}} CO_2(g) \longrightarrow \underline{\hspace{0.1cm}} H_2O(g) + \underline{\hspace{0.1cm}} CO(g)$, the Activation Energy is 24 kJ/mol and the overall change in energy is 41 kJ/mol. Sketch the potential energy profile for th reaction. Label the axis, the location of the Reactants, Products, and Transition state, along with th values of E_a and ΔE . Is the reaction exothermic or endothermic? Using a second color (or dotted line etc), draw what the potential energy profile would be for an enzyme catalyzed reaction

CHE 112 - Homework - Ch 17c

[5 pt] 4. Graph the following data for the reaction: $2 \text{NO}_2(g) \longrightarrow 2 \text{NO}(g) + O_2(g)$, and using the graph, calculate the Activation Energy for the reaction (in kJ/mol). Attach the graph to the back of your homework

Temp (°C)	330.	354	378	383
$k (M^{-1}s^{-1})$	0.77	1.8	4.1	4.7

- [3 pt] 5. A certain first-order reaction has a rate constant of $1.0 \times 10^{-3} s^{-1}$ at 25°C. If the reaction rate triples when the temperature is increased to 35°C, what is the activation energy (in kJ/mol)?
- [5 pt] 6. Rate constants for the reaction ___NO₂(g) + ___CO(g) \longrightarrow ___NO(g) + ___CO₂(g) are 1.30 M⁻¹s⁻¹ at 700. K and 23.0 M⁻¹s⁻¹ at 800. K. 6(a) What is the value of the Activation Energy in kJ/mol?
 - 6(b) What is the rate constant at 750.K?