CHE 112 - Homework - Ch 17a Kinetics - Rate Laws

Score:	/25
ocore.	/ 40

Name: _____

Date: _____

[6 pt] 1. The following rate data was collected for the reaction: $2\text{NO}_2(g) \longrightarrow 2\text{NO}(g) + O_2(g)$. Using this data, answer the following questions:

Time	$[NO_2]$ (M)	Time	$[NO_2]$ (M)
0	8.00×10^{-3}	200	4.29×10^{-3}
50	6.58×10^{-3}	300	3.48×10^{-3}
100	5.59×10^{-3}	400	2.93×10^{-3}
150	4.85×10^{-3}	500	2.53×10^{-3}

- (a) What is the average rate of decomposition of NO_2 between 50-100 seconds using the data below?
- (b) How is the rate of consumption of NO_2 related to the rate of production of NO? (in words and an equation)
- (c) How is the rate of consumption of NO_2 related to the rate of production of O_2 ? (in words and an equation)
- [4 pt] 2. The following reaction is first order in Br^- and BrO_3^- and second order in H^+ .

- (a) Write the rate law.
- (b) What is the overall reaction order?
- (c) How does the reaction rate change if the H⁺ concentration triples? Explain.
- (d) How does the reaction rate change if the concentration of Br⁻ and BrO₃⁻ is halved? Explain.

[7 pt] 3. Given the reaction $\underline{\hspace{1cm}}_H_2O_2(aq) + \underline{\hspace{1cm}}_3I^-(aq) + \underline{\hspace{1cm}}_2H^+(aq) \longrightarrow \underline{\hspace{1cm}}_{I_3}^-(aq) + \underline{\hspace{1cm}}_2H_2O(l)$ and the following experimental rate data based on the rate of formation of $I_3^-(aq)$, answer the following questions:

Exp	$[H_2O_2]$ (M)	$[I^-]$ (M)	Rate (M/s)
1	0.100	0.100	1.15×10^{-4}
2	0.100	0.200	2.30×10^{-4}
3	0.200	0.100	2.30×10^{-4}
4	0.200	0.200	4.60×10^{-4}

- (a) What is the rate law?
- (b) What is the value of the rate constant?

3(b) _____

- (c) What is the reaction rate when the initial concentration are: $\rm H_2O_2=0.300~M~and~I^-=0.400~M?$
- 3(c) _____

[8 pt] 4. Given the reaction $\underline{2}$ NO(g) + $\underline{}$ Cl₂(g) \longrightarrow $\underline{}$ NOCl(g) and the following experimental rate data based on the consumption of Cl₂, answer the following questions:

Exp	[NO] (M)	$[\operatorname{Cl}_2]$ (M)	Rate (M/s)
1	0.13	0.20	1.0×10^{-2}
2	0.26	0.20	4.0×10^{-2}
3	0.13	0.10	5.0×10^{-3}

- (a) What is the rate law?
- (b) What is the value of the rate constant?

- 4(b) _____
- (c) What is the reaction rate when both reactant concentrations are 0.12 M? 4(c) _____