\qquad
\qquad Date: \qquad
[6 pt] 1. The following rate data was collected for the reaction: $2 \mathrm{NO}_{2}(\mathrm{~g}) \longrightarrow 2_{\mathrm{NO}} \mathrm{NO}(\mathrm{g})+\ldots \mathrm{O}_{2}(\mathrm{~g})$. Using this data, answer the following questions:

Time	$\left[\mathrm{NO}_{2}\right](\mathrm{M})$	Time	$\left[\mathrm{NO}_{2}\right](\mathrm{M})$
0	8.00×10^{-3}	200	4.29×10^{-3}
50	6.58×10^{-3}	300	3.48×10^{-3}
100	5.59×10^{-3}	400	2.93×10^{-3}
150	4.85×10^{-3}	500	2.53×10^{-3}

(a) What is the average rate of decomposition of NO_{2} between $50-100$ seconds using the data below?
(b) How is the rate of consumption of NO_{2} related to the rate of production of NO? (in words and an equation)
(c) How is the rate of consumption of NO_{2} related to the rate of production of O_{2} ? (in words and an equation)
[4 pt] 2. The following reaction is first order in Br^{-}and BrO_{3}^{-}and second order in H^{+}.

$$
5 \mathrm{Br}^{-}(\mathrm{aq})+\ldots \mathrm{BrO}_{3}^{-}(\mathrm{aq})+\underline{6} \mathrm{H}^{+}(\mathrm{aq}) \longrightarrow \underline{3} \mathrm{Br}_{2}(\mathrm{aq})+\underline{3} \mathrm{H}_{2} \mathrm{O}(\mathrm{l})
$$

(a) Write the rate law.
(b) What is the overall reaction order?
(c) How does the reaction rate change if the H^{+}concentration triples? Explain.
(d) How does the reaction rate change if the concentration of Br^{-}and $\mathrm{BrO}_{3}{ }^{-}$is halved? Explain.
 ing experimental rate data based on the rate of formation of $\mathrm{I}_{3}{ }^{-}(\mathrm{aq})$, answer the following questions:

Exp	$\left[\mathrm{H}_{2} \mathrm{O}_{2}\right](\mathrm{M})$	$\left[\mathrm{I}^{-}\right](\mathrm{M})$	Rate $(\mathrm{M} / \mathrm{s})$
1	0.100	0.100	1.15×10^{-4}
2	0.100	0.200	2.30×10^{-4}
3	0.200	0.100	2.30×10^{-4}
4	0.200	0.200	4.60×10^{-4}

(a) What is the rate law?
(b) What is the value of the rate constant?

3(b) \qquad
(c) What is the reaction rate when the initial concentration are: $\mathrm{H}_{2} \mathrm{O}_{2}=0.300 \mathrm{M}$ and $\mathrm{I}^{-}=0.400 \mathrm{M}$?

3(c) \qquad
[8 pt] 4. Given the reaction $\underline{2}^{2} \mathrm{NO}(\mathrm{g})+\ldots \mathrm{Cl}_{2}(\mathrm{~g}) \longrightarrow \underline{2} \mathrm{NOCl}(\mathrm{g})$ and the following experimental rate data based on the consumption of Cl_{2}, answer the following questions:

Exp	$[\mathrm{NO}](\mathrm{M})$	$\left[\mathrm{Cl}_{2}\right](\mathrm{M})$	Rate $(\mathrm{M} / \mathrm{s})$
1	0.13	0.20	1.0×10^{-2}
2	0.26	0.20	4.0×10^{-2}
3	0.13	0.10	5.0×10^{-3}

(a) What is the rate law?
(b) What is the value of the rate constant?

4(b) \qquad
(c) What is the reaction rate when both reactant concentrations are 0.12 M ?

4(c) \qquad

