CHE 112 - Homework - Ch 13d Nonstandard States or ΔG and \mathbf{K}_c

Score: ____/25

Name: ____

Date: ____

[5 pt] 1. Define the relationship between Gibbs Free Energy at standard state conditions and Gibbs Free Energy at nonstandard state conditions. Define each variable, and give the standard units for each

- [6 pt] 2. Urea (NH₂CONH₂ is an important fertilizer and is produced industrially by reaction 2NH₃(g) + $CO_2(g) \longrightarrow NH_2CONH_2(g) + H_2O(l)$. Given that $\Delta G^\circ = -13.6 \text{ kJ/mol}$, calculate ΔG at STP for the following sets of conditions:
 - (a) 10 atm NH_3 , 10 atm CO_2 and 1.0 atm NH_2CONH_2 2(a) _____

(b) 0.10 atm NH_3 , 0.10 atm CO_2 and $1.0 \text{ M NH}_2\text{CONH}_2$

2(b) _____

(c) Which set of reaction conditions lead to a spontaneous reaction (A or B)? 2(c) _____

CHE 112 - Homework - Ch 13d

[5 pt] 3. Define the relationship between Gibbs Free Energy and the Equilibrium Constant. Define each variable, and give the standard units for each

[4 pt] 4. Calculate the equilibrium constant for the reaction in Question 2.

4. _____

[5 pt] 5. At 25 °C, the acid dissociation constant (K_c for a spirin (C₉H₈O₄) is 3.0×10^{-4} . 5. _____ Calculate ΔG° for the reaction: C₉H₈O₄(aq) + H₂O(l) \implies H₃O⁺(aq) + C₉H₇O₄⁻(aq)