CHE 112 - Homework - Ch 13b Using the Equilibrium Constant

Score: ____/30

Name: _

Date: ____

- [4 pt] 2. The value of k_c for the reaction <u>3</u> $O_2(g) \rightleftharpoons 2 O_3(g)$ is 1.7×10^{-56} at 25 °C.
 - (a) Does pure air contain more oxygen or ozone at equilibrium? Explain.
 - (b) If the equilibrium concentration of O_2 is 8.0×10^{-3} M, what is the equilibrium concentration of O_3 ?
- [4 pt] 3. Given the reaction $\underline{H_2O(g)} + \underline{CH_4(g)} \rightleftharpoons CO(g) + \underline{3} H_2(g)$ where $k_c = 4.7$ at 1400 K. If a mixture of reactants and products at 1400 K contains 0.035M H₂O, 0.050 M CH₄, 0.150 M CO, and 0.200 M H₂:
 - (a) Is the mixture at equilibrium? Explain.
 - (b) If the mixture is not at equilibrium, in which direction will the reaction proceed to reach equilibrium? Explain.

[6 pt] 4. Given the reaction $N_2(g) + O_2(g) \implies 2$ NO(g) with $k_c = 1.70 \times 10^{-3}$ at 2300 K, if the initial concentration are 1.40 M N₂ and 1.40 M O₂, what is the concentration of each compound N₂, O₂, NO when the mixture reaches equilibrium? Explain.

[6 pt] 5. At a certain temperature, the reaction $_PCl_5(g) \rightleftharpoons PCl_3(g) + _Cl_2(g)$ has an equilibrium constant $k_c = 5.8 \times 10^{-2}$. Calculate the equilibrium concentration of each compound if the initial concentration of $PCl_5 = 0.160 \text{ M}$

[6 pt] 6. Given the reaction $_HC_2H_3O_2(aq) + _C_2H_5OH(aq) \rightleftharpoons CH_3COOC_2H_5(aq) + _H_2O(aq)$ with $k_c = 1.4$ at 25 °C, if the initial concentration are 1.00M HC_2H_3O_2 and 10.0 M C_2H_5OH, what is the concentration of each compound when the mixture reaches equilibrium? Explain.