Name: \qquad Date: \qquad
[4 pt] 1. Calculate k_{c} for the following reaction $2 \mathrm{C}_{2} \mathrm{H}_{4}(\mathrm{~g})+\ldots \mathrm{O}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{CH}_{3} \mathrm{CHO}(\mathrm{g})$. At equilibrium the concentration of each component is: $\left[\mathrm{C}_{2} \mathrm{H}_{4}\right]=0.250 \mathrm{M},\left[\mathrm{O}_{2}\right]=0.750 \mathrm{M},\left[\mathrm{CH}_{3} \mathrm{CHO}\right]=0.100 \mathrm{M}$.
[4 pt] 2. The value of k_{c} for the reaction $3^{3} \mathrm{O}_{2}(\mathrm{~g}) \rightleftharpoons \underbrace{}_{2} \mathrm{O}_{3}(\mathrm{~g})$ is 1.7×10^{-56} at $25^{\circ} \mathrm{C}$.
(a) Does pure air contain more oxygen or ozone at equilibrium? Explain.
(b) If the equilibrium concentration of O_{2} is $8.0 \times 10^{-3} \mathrm{M}$, what is the equilibrium concentration of O_{3} ?
[4 pt] 3. Given the reaction $_\mathrm{H}_{2} \mathrm{O}(\mathrm{g})+\ldots \mathrm{CH}_{4}(\mathrm{~g}) \rightleftharpoons \ldots \mathrm{CO}(\mathrm{g})+3 \mathrm{H}_{2}(\mathrm{~g})$ where $\mathrm{k}_{c}=4.7$ at 1400 K . If a mixture of reactants and products at 1400 K contains $0.035 \mathrm{M} \mathrm{H}_{2} \mathrm{O}, 0.050 \mathrm{M} \mathrm{CH}_{4}, 0.150 \mathrm{M} \mathrm{CO}$, and $0.200 \mathrm{M} \mathrm{H}_{2}$:
(a) Is the mixture at equilibrium? Explain.
(b) If the mixture is not at equilibrium, in which direction will the reaction proceed to reach equilibrium? Explain.

CHE 112-Homework - Ch 13b

[6 pt] 4. Given the reaction $_\mathrm{N}_{2}(\mathrm{~g})+\ldots \mathrm{O}_{2}(\mathrm{~g}) \rightleftharpoons \simeq 2 \mathrm{NO}(\mathrm{g})$ with $\mathrm{k}_{c}=1.70 \times 10^{-3}$ at 2300 K , if the initial concentration are $1.40 \mathrm{M} \mathrm{N}_{2}$ and $1.40 \mathrm{M} \mathrm{O}_{2}$, what is the concentration of each compound $\mathrm{N}_{2}, \mathrm{O}_{2}$, NO when the mixture reaches equilibrium? Explain.
[6 pt] 5. At a certain temperature, the reaction $\quad \mathcal{P C l}_{5}(\mathrm{~g}) \rightleftharpoons \ldots \mathrm{PCl}_{3}(\mathrm{~g})+\ldots \mathrm{Cl}_{2}(\mathrm{~g})$ has an equilibrium constant $\mathrm{k}_{c}=5.8 \times 10^{-2}$. Calculate the equilibrium concentration of each compound if the initial concentration of $\mathrm{PCl}_{5}=0.160 \mathrm{M}$
[6 pt] 6. Given the reaction $\ldots \mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}(\mathrm{aq})+\ldots \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}(\mathrm{aq}) \rightleftharpoons \not \mathrm{CH}_{3} \mathrm{COOC}_{2} \mathrm{H}_{5}(\mathrm{aq})+\ldots \mathrm{H}_{2} \mathrm{O}(\mathrm{aq})$ with $\mathrm{k}_{c}=1.4$ at $25^{\circ} \mathrm{C}$, if the initial concentration are $1.00 \mathrm{M}_{\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2} \text { and } 10.0 \mathrm{M}_{2} \mathrm{H}_{5} \mathrm{OH} \text {, what is } \text {, }{ }^{2} \text {, }}$ the concentration of each compound when the mixture reaches equilibrium? Explain.

