Name: _

Date: _

[4 pt] 1. Define the term Gibbs free-energy, give the symbol, and standard units. Also include the sign conventions for Gibbs free-energy.

[8 pt] 2. Complete the following table:

Statement	Sign of ΔH	Sign of ΔS	Sign of ΔG
Spontaneous at all Temp:			
Nonspontaneous at all Temp:			
Spontaneous at Low Temp:			
Spontaneous at High Temp:			

[6 pt] 3. Answer the following questions about spontaneous and nonspontaneous processes:

(a) Is it possible for a reaction to be endothermic (absorb heat), yet spontaneous? Explain.

(b) Is it possible for a reaction to be exothermic (release heat), yet nonspontaneous? Explain.

(c) Is it possible for a reaction to never be spontaneous? Explain.

CHE 112 - Homework - Ch 12b

[6 pt]	4.	. Tell whether reactions with the following values of ΔH and ΔS are (S)pontaneous, or (N)onspontaneous. Explain.			
		(a) $\Delta H = -128 \text{ kJ}, \Delta S = 35 \text{ J/K}, \text{ at 500 K}$	4(a)		
		(b) $\Delta H = + 67 \text{ kJ}, \Delta S = -140 \text{ J/K}, \text{ at } 250 \text{ K}$	4(b)		
		(c) $\Delta H = +75 \text{ kJ}, \Delta S = 95 \text{ J/K}, \text{ at } 800 \text{ K}$	4(c)		
[8 pt]	5. Vinyl chloride (H ₂ C=CHCl), is the starting material used in the industrial preparation of polyvinylchlo- rides. It is prepared by a two step process that begins with the following reaction: $Cl_2(g)+H_2C=CHCl(g)$ $ClCH_2CH_2Cl(l)$ where $\Delta H = -217.5$ kj/mol and $\Delta S = -233.9$ J/K·mol.				
		5(a) Is the reaction favored enthalpacically? Explain.	5(a)		
		5(b) Is the reaction favored entropically? Explain.	5(b)		
		5(c) What is ΔG for the reaction (at STP) in kJ/mol? Show work.	5(c)		
		5(d) What is the equilibrium temperature at which the reaction switches between spontaneous and nonspontaneous? Show work.	5(d)		
		5(e) Is the reaction spontaneous at 500K? Explain.	5(e)		

CHE 112 - Homework - Ch 12b

[3 pt] 6. The boiling point of a substance is defined as the temperature at which the liquid and vapor can coexist in equilibrium. Use the heat of vaporization ($\Delta H_{vap} = 30.91 \text{ kJ/mol}$) and the entropy of vaporization ($\Delta S_{vap} = 93.2 \text{ J/K} \cdot \text{mol}$) to calculate the boiling point in °C of liquid bromine.

[9 pt] 7. Calculate ΔH^o , ΔS^o , and ΔG^o for the following reactions at STP and predict whether the reaction is spontaneous or nonspontaneous. Show work on a separate sheet of paper if required.

Reaction	$\Delta \mathbf{H}$	$\Delta \mathbf{S}$	$\Delta \mathbf{G}$	Spont/Non
(a) $2SO_2(g) + O_2(g) \longrightarrow 2SO_3(g)$				
(b) $N_2(g) + 2H_2(g) \longrightarrow N_2H_4(l)$				
(c) $CH_3OH(l) + O_2(g) \longrightarrow HCO_2H(l) + H_2O(l)$				

[6 pt] 8. For each of the reactions in the first problem, are they (A) Always spontaneous (B) Never Spontaneous (C) Spontaneous below a certain temperature (include temperature), or (D) Spontaneous above a certain temperature (include temperature). Explain.

(a) $2SO_2(g) + O_2(g) \longrightarrow 2SO_3(g)$	8(a)
(b) $N_2(g) + 2H_2(g) \longrightarrow N_2H_4(l)$	8(b)
(c) $CH_3OH(l) + O_2(g) \longrightarrow HCO_2H(l) + H_2O(l)$	8(c)