Name: \qquad Date: \qquad
[6 pt] 1. Define Vaporization and Condensation. Sketch a picture illustrating your definition. What properties (3) is the rate of vaporization dependent on (include whether it is Directly or Inversely proportional).
[5 pt] 2. Write the mathematical equation describing the amount of energy required to vaporize a substance. Include the typical units of each variable. Is vaporization an Endothermic or Exothermic reaction? How much energy (in kJ) would it take to vaporize 250 g of Acetone $\left(\mathrm{C}_{3} \mathrm{H}_{6} \mathrm{O}\right)$ at its normal boiling point? (Hint: Example 10.8 contains a value you need).
[4 pt] 3. Explain why as the temperature increases the rate of vaporization increases. Include a sketch in your explanation.
[4 pt] 4. Explain how a solution can evaporate (go from the liquid state to the gas state) when the temperature is below the boiling point of the liquid, and the atmospheric pressure is 760 mmHg . (For example, on a sunny day a puddle of water will evaporate even though the temperature is well below the boiling point of water.) A sketch might be useful too, so give me one!

CHE 112-Homework - Ch 10c

[5 pt] 5. Define Vapor Pressure. Sketch a picture illustrating your definition. What properties (2) is Vapor Pressure independent of? What properties (2) is Vapor Pressure dependent on (2)
[6 pt] 6. What is meant by the term 'dynamic equilibrium' when used in the context of liquid/vapor equilibrium. What part is 'dynamic' and what part is 'equilibrium'? Sketch a picture illustrating this concept.
[5 pt] 7. Order the following molecules from lowest vapor pressure to highest vapor pressure (ex $\mathrm{A}<\mathrm{B}<\mathrm{C}$ etc). (Hint: Drawing Lewis structures may help you decide.) Explain
(a) CH_{4}
(b) $\mathrm{CH}_{3} \mathrm{Cl}$
(c) $\mathrm{H}_{2} \mathrm{O}$
(d) $\mathrm{CH}_{3} \mathrm{OH}$
[2 pt] 8. If water is placed in (A) a 100 mL sealed flask and in (B) a 250 mL sealed flask which will have the highest vapor pressure. Explain.
[2 pt] 9. If in the above example more water is added to flask (B), which flask will have the highest vapor pressure? Explain.

CHE 112-Homework - Ch 10c

[3 pt] 10. Define the boiling point in terms of the Vapor Pressure and Atmospheric Pressure. What are the relationships (direct/inversely proportional too) between Boiling Point, Vapor Pressure, Atmospheric Pressure, and Elevation.
[2 pt] 11. The temperature of a beaker of boiling water on a hot-plate reads $100^{\circ} \mathrm{C}$. What can one conclude is the pressure of the atmosphere (in Torr or mm Hg). Explain.
[2 pt] 12. The temperature of a beaker of boiling ethanol on a hot-plate reads $60^{\circ} \mathrm{C}$. What can one conclude is the pressure of the atmosphere (in Torr or mm Hg). Explain.
[2 pt] 13. Suggest a method where water could be made to boil at $50^{\circ} \mathrm{C}$. Explain.
[2 pt] 14. A mixture of solution A and solution B is placed in a closed container. The boiling point of solution A is $70^{\circ} \mathrm{C}$ and solution B is $23^{\circ} \mathrm{C}$. Which substance will have the largest number of molecules in the vapor above the liquid at $20^{\circ} \mathrm{C}$. Explain.

CHE 112-Homework - Ch 10c

[5 pt] 15. What is $\Delta H_{\text {vap }}$ for SiCl_{4} (in $\mathrm{kJ} / \mathrm{mol}$) if the vapor pressure is 100 mmHg at $5.4^{\circ} \mathrm{C}$ and the normal boiling point is $56.8^{\circ} \mathrm{C}$?
[5 pt] 16. Using the value of $\Delta H_{v a p}$ from the previous problem, what is the vapor pressure of SiCl_{4} (in mm Hg) at $20.0^{\circ} \mathrm{C}$.
[10 pt] 17. The following data table gives the vapor pressure of mercury at various temperatures.
(a) Complete the table.
(b) Graph (using Excel) a graph of T vs $\mathrm{P}_{\text {vap }}$. Include a curve-fit, equation and R^{2} value on the graph.
(c) Graph (using Excel) a graph of $1 / \mathrm{T}$ vs $\ln \left(\mathrm{P}_{\text {vap }}\right)$. Include a curve-fit, equation and R^{2} value on the graph. (d) Using the second graph calculate $\Delta H_{\text {vap }}$ (in $\mathrm{kJ} / \mathrm{mol}$).
(e) Attach the properly labeled graphs to the back of the homework. (Use Excel, and drawn graphs will receive ZERO points).

Temp (K)	$\mathbf{P}_{\text {vap }}(\mathbf{m m H g})$	$\mathbf{1 / T}$	$\ln \left(\mathbf{P}_{\text {vap }}\right)$
500.	39.3		
520.	68.5		
540.	114.4		
560.	191.6		
580.	286.4		
600.	432.3		

