CHE 111 - Homework - Ch 9c BDE's and Lattice Energy

Score:	/55

Name: _____

Date: _____

- [3 pt] 1. Why are Bond Dissociation Energies (BDE) a useful method for calculating ΔH values? What advantage do they have over the tabulated $\Delta H_{\rm f}^{\circ}$ values? What disadvantage do they have?
- [5 pt] 2. Use the BDE's on the Equations Cheat Sheet to calculate the approximate ΔH° (in kJ) 2. ______ for the combustion of methane: $CH_4(g) + 2O_2(g) \longrightarrow CO_2(g) + 2H_2O(g)$

[5 pt] 3. Use the BDE's on the Equations Cheat Sheet to calculate the approximate ΔH° (in kJ) 3. ______ for the industrial synthesis of isopropyl alcohol from the reaction of propene and water:

[7 pt] 4. Use the BDE's on the Equations Cheat Sheet to calculate the approximate ΔH° (in kJ)4. ______ for the combustion of propane. (Hint: writing and balancing the complete reaction will no doubt prove useful.)

CHE 111 - Homework - Ch $9\mathrm{c}$

[3 pt]	5.	Define the term Lattice Energy. Are they generally Endothermic or Exothermic? Why are they hard to calculate?
[5 pt]	6.	Define Lattice Energy in terms of a mathematical equation, properly define each variable.
[3 pt]	7.	Does the magnitude of the lattice energy Increase or Decrease as you move down a column (ex: LiCl vs CsCl. Explain the trend.
[3 pt]	8.	Does the magnitude of the lattice energy Increase or Decrease as the charge on the atoms increases (ex: LiCl vs ${\rm MgCl_2}$. Explain the trend.
[3 pt]	9.	Order the following compounds according to their expected lattice energies ${\rm AlBr_3}$, ${\rm MgBr_2}$, ${\rm LiBr.}$ (Note, you will not have access to your book to look up the values on an exam, so try to do it without looking in the book.) Explain.
[3 pt]	10.	Order the following compounds according to their expected lattice energies KF, KBr, KI. (Note, you will not have access to your book to look up the values on an exam, so try to do it without looking in the book.) Explain.

	Using the back of the page or a separate sheet of paper to show work for the following
	problems and write your final answer in the space provided.
_	

- [5 pt] 12. Using a Born-Haber cycle and various tables in your book, calculate the energy change 12. ______ in kJ/mol for the formation of CaF_2 from its elements. The sublimation energy for Ca is 178.2 kJ/mol and the lattice energy is -2630 kJ/mol.
- [5 pt] 13. Using the data below, calculate an overall energy change for the formation of CaCl and 13. CaCl₂ from the elements. Which is more likely to form? E_{ea} for Cl = -348 kJ/mol, E_{IE1} for Ca = 589.8 kJ/mol, E_{IE2} for Ca = 1145.4 kJ/mol, Heat of Sublimation for Ca = 178.2 kJ/mol, Lattice Energy for CaCl = 717 kJ/mol, and Lattice Energy for CaCl₂ = 2258 kJ/mol.