\qquad
\qquad Date: \qquad
[5 pt] 1. What are the 5 assumptions made in the Kinetic-Molecular theory of gases.
[4 pt] 2. Using the KMT of gases explain the following laws:
(a) How do these assumptions explain Charles's law?
(b) How do these assumptions explain Boyle's law?
[4 pt] 3. Label each curve below (with the appropriate temperature and compound):
(a) Assuming each curve is for Helium gas at a temperature of $200 \mathrm{~K}, 600 \mathrm{~K}$ and 1000 K . Explain (ie what property of gasses does this illustrate).
(b) Assuming one curve is for He , one curve is for N_{2} and one curve is for Ar. Explain (ie what property of gasses does this illustrate).

[4 pt] 4. Traffic on the German autobahns reaches speeds of up to 230. km/hr. At what temperature (in ${ }^{\circ} \mathrm{C}$) does an oxygen molecule have this same average speed? Explain.
4. \qquad
[8 pt] 5. Answer the following questions about Br_{2} gas and Xe gas.
(a) What is the average speed (in m / s) of a Br_{2} molecule at $20.0^{\circ} \mathrm{C}$ \qquad
(b) At what temperature (in ${ }^{\circ} \mathrm{C}$) would a Xe atom have the same average speed? 5(b)
[4 pt] 6. What TWO assumptions in the ideal gas law (and molecular-kinetic theory) are reasonably valid at STP but fail for higher pressures/Low Temperatures. Explain.
[3 pt] 7. The van der Waals equation predicts that:
(a) The effect of the increase in volume of gas molecules (they are points) leads the overall volume to:
(I)ncrease, (D)ecrease or (S)tay the same?

7(a) \qquad
(b) The effect of the increase in IMF's causes the overall volume to: (I)ncrease, (D)ecrease or (S)tay the same? \qquad
(c) At intermediate pressures the two corrections to the Ideal Gas law tend to 7(c) cancel out, but at high pressures ($>350 \mathrm{~atm}$) the overall volume will (I)ncrease, (D)ecrease, or (S)tay the same compared the the result predicted by the Ideal Gas Law.
[8 pt] 8. Given 45.0 g of NH_{3} gas in a 1.00 L container at $100 .{ }^{\circ} \mathrm{C}$:
(a) What is the pressure (in atm) in the container according to the ideal gas law? 8(a) \qquad
(b) What is the pressure (in atm) in the container according to the van der Waals equation? (Given: $\mathrm{a}=4.17\left(\mathrm{~L}^{2} \cdot a t m\right) / \mathrm{mol}^{2}$, and $\mathrm{b}=0.0371 \mathrm{~L} / \mathrm{mol}$)

8(b) \qquad

