Score: ____/40

Ν	ame:
---	------

Date: ____

[5 pt] 1. What are the 5 assumptions made in the Kinetic-Molecular theory of gases.

[4 pt] 2. Using the KMT of gases explain the following laws:

- (a) How do these assumptions explain Charles's law?
- (b) How do these assumptions explain Boyle's law?
- [4 pt] 3. Label each curve below (with the appropriate temperature and compound):
 - (a) Assuming each curve is for Helium gas at a temperature of 200 K, 600 K and 1000 K. Explain (ie what property of gasses does this illustrate).
 - (b) Assuming one curve is for He, one curve is for N_2 and one curve is for Ar. Explain (ie what property of gasses does this illustrate).

CHE 111 - Homework - Ch 8d

[4 pt] 4. Traffic on the German autobahns reaches speeds of up to 230. km/hr. At what temperature (in °C) does an oxygen molecule have this same average speed? Explain.

4. _____

 $[8\ {\rm pt}]$ 5. Answer the following questions about ${\rm Br}_2$ gas and Xe gas.

(a) What is the average speed (in m/s) of a $\rm Br_2$ molecule at 20.0°C

5(a) _____

(b) At what temperature (in °C) would a Xe atom have the same average speed? 5(b) _____

CHE 111 - Homework - Ch 8d

[4 pt] 6. What TWO assumptions in the ideal gas law (and molecular-kinetic theory) are reasonably valid at STP but fail for higher pressures/Low Temperatures. Explain.

[3 pt] 7. The van der Waals equation predicts that:

(a)	The effect of the increase in volume of gas molecules (they are points) lead	is the overall volume
	to:	
	(I)ncrease, (D)ecrease or (S)tay the same?	7(a)
(b)	The effect of the increase in IMF's causes the overall volume to: (I)ncrease, (D)ecrease or (S)tay the same?	7(b)
(c)	At intermediate pressures the two corrections to the Ideal Gas law tend to cancel out, but at high pressures (> 350 atm) the overall volume will (I)ncrease, (D)ecrease, or (S)tay the same compared the the result predicted by the Ideal Gas Law.	7(c)

- $[8\ {\rm pt}]$ $\,$ 8. Given 45.0 g of ${\rm NH}_3$ gas in a 1.00 L container at 100.°C:
 - (a) What is the pressure (in atm) in the container according to the ideal gas law? 8(a) _____

(b) What is the pressure (in atm) in the container according to the van der Waals equation? (Given: $a = 4.17(L^2 \cdot atm)/mol^2$, and b = 0.0371 L/mol) 8(b) _____