Name: $\qquad$ Date: $\qquad$
[5 pt] 1. Calculate the molecular weights in $(\mathrm{g} / \mathrm{mol})$ for the following compounds. Show work to receive credit.
(a) $\mathrm{Mg}_{3}\left(\mathrm{PO}_{4}\right)_{2}$
1(a) $\qquad$
(b) $\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}$
1(b) $\qquad$
[15 pt] 2. Perform the following conversions. Use correct units and significant figures in all calculations.
(a) 20.0 mols $\mathrm{KNO}_{3}$ to grams

2(a) $\qquad$
(b) $5.4 \times 10^{3} \mathrm{~g}$ of $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{C}_{2} \mathrm{O}_{4}$ to mols
(c) $5.0 \times 10^{21}$ atoms of He to grams

2(c) $\qquad$
(d) 50.0 millimol NaOH to molecules

2(d) $\qquad$
(e) 72.000 millimol HCl to grams

2(e) $\qquad$
[15 pt] 3. Perform the following conversions. Use correct units and significant figures in all calculations.
(a) 152 kg CaCO 3 to molecules
(b) How many oxygen atoms are in 1.75 moles of $\mathrm{H}_{3} \mathrm{PO}_{4}$ ?
(c) How many atoms of oxygen of $\mathrm{NaNO}_{3}$ are in 4.5 grams of $\mathrm{NaNO}_{3}$ ?
(d) What is the molarity of a solution made from 125.5 grams of $\mathrm{KNO}_{3}$ in 500.0 mL of water?

3(d)
$\qquad$
(e) How many mols of HCl are in a 150.0 mL of a 2.0 M solution?

3(e) $\qquad$
(f) How many grams of boric acid $\left(\mathrm{H}_{3} \mathrm{BO}_{4}\right)$ would I need to prepare a 167 mL of a 0.200 M solution?

3(f)
[15 pt] 4. Answer the following questions about the reaction below:
$\ldots \mathrm{H}_{3} \mathrm{PO}_{4}(\mathrm{aq})+\ldots \mathrm{KOH}(\mathrm{aq}) \longrightarrow \ldots \mathrm{K}_{3} \mathrm{PO}_{4}(\mathrm{aq})+\ldots \mathrm{H}_{2} \mathrm{O}(\mathrm{l})+250 \mathrm{~kJ}$
(a) How many moles of $\mathrm{H}_{3} \mathrm{PO}_{4}$ are required to react with 15.0 mols of KOH ?

4(a) $\qquad$
(b) How many moles of $\mathrm{H}_{3} \mathrm{PO}_{4}$ are required to produce 12.0 moles of $\mathrm{K}_{3} \mathrm{PO}_{4}$ ? 4(b) $\qquad$
(c) How many moles of KOH are required to produce 8.50 moles of $\mathrm{K}_{3} \mathrm{PO}_{4}$ ? $\qquad$
(d) How many moles of $\mathrm{H}_{2} \mathrm{O}$ are produced when $2.5 \times 10^{-1}$ mols of $\mathrm{H}_{3} \mathrm{PO}_{4}$ react? 4(d) $\qquad$
(e) How many moles of KOH are required to produce $2.5 \times 10^{8} \mathrm{~J}$ of heat?

4(e) $\qquad$
(f) Challenge Question: If you want to make 10 moles of $\mathrm{H}_{2} \mathrm{O}$ how many moles of $\mathrm{H}_{3} \mathrm{PO}_{4}$ and how many moles of KOH will you need?

4(f) $\qquad$
$\qquad$
(g) Challenge Question: If you have 6 mols of $\mathrm{H}_{3} \mathrm{PO}_{4}$ and 6 moles of KOH how many moles of $\mathrm{K}_{3} \mathrm{PO}_{4}$ can you produce?
[15 pt] 5. Octane, $\mathrm{C}_{8} \mathrm{H}_{18}$, burns in air to form carbon dioxide and water according to the following reaction.
$2 \mathrm{C}_{8} \mathrm{H}_{18}(\mathrm{l})+25 \mathrm{O}_{2}(\mathrm{~g}) \longrightarrow 16 \mathrm{CO}_{2}(\mathrm{~g})+18 \mathrm{H}_{2} \mathrm{O}(\mathrm{g})+10,900 \mathrm{~kJ}$
(a) How many grams of $\mathrm{CO}_{2}$ are produced when 10.0 grams of $\mathrm{C}_{8} \mathrm{H}_{18}$ are combusted? 5(a) $\qquad$
(b) How many grams of $\mathrm{O}_{2}$ gas are consumed to produce 530.0 grams of $\mathrm{H}_{2} \mathrm{O}$ ? 5(b) $\qquad$
(c) How many grams of $\mathrm{C}_{8} \mathrm{H}_{18}$ must be combusted to produce 25.0 kg of $\mathrm{CO}_{2}$ ? 5 (c) $\qquad$
(d) How many kJ of energy is created when 100.0 grams of $\mathrm{C}_{8} \mathrm{H}_{18}$ are combusted? 5(d)
(e) How many grams of products can be produced from burning 53.75 grams of $\mathrm{C}_{8} \mathrm{H}_{18}$ ? 5(e)

5(e) $\qquad$
[15 pt] 6. In a blast furnace, iron (III) oxide reacts with coke (carbon) to produce molten iron and carbon monoxide.
(a) Write the balanced reaction described above. Be sure to include the states of known materials.
(b) How many grams of carbon are required to react with 15.0 grams of iron (III) oxide? 6(b)
(c) How many grams of Iron (III) oxide are required to produce 10.0 kg of Iron? 6(c) $\qquad$
(d) How many kilograms of carbon monoxide are produced for every 1.0 kilograms of of Iron produced?

6(d) $\qquad$
(e) How many grams of Iron can be produced from 1.0 kg of Iron (III) Oxide? 6(e) $\qquad$

