
OER 5.1-5.3

Score: _____/60

Name: _

Date: _____

[5 pt] 1. In the figure below label (1) the bond-length (and value) and (2) the bond energy (and value) of the molecule. Explain in the space to the right the values of the Potential Energy at each letter (a-d).

[2 pt] 2. What are 2 flaws in Lewis Structures that lead to the development of Valence Bond Theory

[3 pt] 3. What are the three key idea's of Valence Bond Theory?

[4 pt] 4. Define the following terms: (1) Promotion of an electron (2) Hybridization. For each include a sketch of an energy level diagram illustrating the term for a C-C single bond.

CHE 111 - Homework - Ch 5a

[3 pt] 5. Illustrate the concept of hybridization using (atomic orbitals like, s,p,d,f) showing the results of an sp³ hybridization below. What is the shape **and** bond angle of the resulting orbitals?

- [6 pt] 6. Answer the following questions about sp^2 hybridization:
 - (a) Draw the energy level diagrams associated with the promotion and hybridization of the orbitals.
 - (b) Show the hybridization using orbitals (s,p,d,f). Properly label each orbital.
 - (c) What shape **and** bond angle are predicted.
- [6 pt] 7. Answer the following questions about sp hybridization:(a) Draw the energy level diagrams associated with the promotion and hybridization of the orbitals.
 - (b) Show the hybridization using orbitals. Properly label each orbital.
 - (c) What shape **and** bond angle are predicted.

CHE 111 - Homework - Ch 5a

[4 pt] 8. In Valence Bond Theory, what is the difference in the spatial distribution of the electrons in a σ bond and a π bond? (Sketch a picture illustrating each).

[5 pt] 9. Draw a picture illustrating the bonding in $CH_2=CH_2$ using Lewis structures **AND** using Valence Bond Theory. For the VBT picture label the orbitals. Also draw an arrow pointing out which bonds are σ -bonds and which are π -bonds

[6 pt] 10. Complete the following tablE: for example 4 charge clouds is - (1) Hybridization: sp^3 , (2) Geometry: Tetrahedral and (3) Orbital Energy Sketch: 4 equal energy orbitals.

Charge Clouds	Hybridization	Geometry	Orbital Energy Sketch
2			
3			
4	sp^3	Tetrahedral	• +
5			
6			

CHE 111 - Homework - Ch 5a

[10 pt] 11. What hybridization would you expect for the central atom in each of the following molecules. Draw the Lewis Structure of each molecule.

(a)	H ₂ CO	11(a)
	-	
(b)	$\mathrm{BH_4}^-$	11(b)
(c)	$XeOF_4$ (violates octet rule)	11(c)
(d)	SO_3	11(d)
(e)	BrO_3^-	11(e)

[6 pt] 12. Given the following skeletal structure ($H_2N-CH_2-CO-OH$), draw the lewis structure for glycine.

(a)	What is the bond angle for H-C-H?	12(a)
(b)	What is the bond angle for H-N-H?	12(b)
(c)	What is the bond angle for O-C-O?	12(c)
(d)	What hybridization is the N atom?	12(d)
(e)	What hybridization is the left C atom?	12(e)
(f)	What hybridization is the right C atom?	12(f)