\qquad Date: \qquad
[10 pt] 1. Fill in the chart below for each Quantum Number:

Quantum Number	Symbol	Allowed Values	Description
Principle QN			
Angular tum QN			
Mamen-			
Spin QN			

[10 pt] 2. Fill in the chart below for the Angular Momentum Quantum Number:

Quantum Number	$\boldsymbol{l = 0}$	$\boldsymbol{l = 1}$	$\boldsymbol{l = 2}$	$\boldsymbol{l}=\mathbf{3}$
Subshell Notation				
Sketch Shape				
\# of or- bitals				

[10 pt] 3. Fill in the missing quantum number(s) in each of the quantum "'address's"' below:

Quantum Address	Missing Numbers	Orbital Description (1s, 2p etc.)
(a) $\mathrm{n}=1, \mathrm{l}=0, \mathrm{~m}_{l}=0, \mathrm{~m}_{s}=? ?$		
(b) $\mathrm{n}=3, \mathrm{l}=? ?, \mathrm{~m}_{l}=-2, \mathrm{~m}_{s}=+1 / 2$		
(c) $\mathrm{n}=? ?, \mathrm{l}=3, \mathrm{~m}_{l}=1, \mathrm{~m}_{s}=1 / 2$		
(d) $\mathrm{n}=2, \mathrm{l}=0, \mathrm{~m}_{l}=? ?, \mathrm{~m}_{s}=-1 / 2$		
(e) $\mathrm{n}=3, \mathrm{l}=? ?, \mathrm{~m}_{l}=-1, \mathrm{~m}_{s}=-1 / 2$		

