Nam	e: Class: Date:	
	Instructions: Answer the following questions. Show ALL work for problem credit. Make sure to include proper units and significant figures for all an	ns to receive full swers.
	Complete and balance the following reactions. Indicate the state (solid, liquid or gas) of known. If heat is produced as a product include it. If no reaction occurs write NR in	of the products when the answer blank.
[3 pt]	1. $\underline{1}$ C ₃ H ₈ (l) + $\underline{5}$ O ₂ (g) \longrightarrow $\underline{3}$ CO ₂ (g) + $\underline{4}$ H ₂ O(g) + heat	1
[3 pt]	2. <u>2</u> $HF(aq) + \underline{1} Ca(OH)_2(aq) \longrightarrow \underline{1} CaF_2(aq) + \underline{2} H_2O(l) + heat$	2
[3 pt]	3. <u>1</u> $\operatorname{Cl}_2(g) + \underline{1} \operatorname{CaF}_2(aq) \longrightarrow \operatorname{NR}$	3 NR
[3 pt]	4. <u>1</u> $K_2SO_3(aq) + \underline{2} HBr(aq) \longrightarrow \underline{2} KBr(aq) + \underline{1} H_2O(l) + \underline{1} SO_2(g)$	4
[3 pt]	5. <u>2</u> NaOH(aq) + <u>1</u> H ₂ SO ₄ (aq) \longrightarrow <u>1</u> Na ₂ SO ₄ (aq) + <u>2</u> H ₂ O(l) + heat	5
[3 pt]	6. <u>2</u> $K(s) + \underline{1} Na_2CO_3(aq) \longrightarrow \underline{1} K_2CO_3(aq) + \underline{2} Na(s)$	6
[3 pt]	7. <u>1</u> CaCl ₂ (aq) + <u>1</u> F ₂ (g) \longrightarrow <u>1</u> CaF ₂ (s) + <u>1</u> Cl ₂ (g)	7
[3 pt]	8. <u>1</u> Al ₂ (SO ₄) ₃ (aq)+ <u>3</u> Ca(C ₂ H ₃ O ₂) ₂ (aq) \longrightarrow <u>2</u> Al(C ₂ H ₃ O ₂) ₃ (aq) + <u>3</u> Ca(C ₂ H ₃ O ₂) ₂ (aq) - <u>2</u> Al(C ₂ H ₃ O ₂) ₃ (aq) + <u>3</u> Ca(C ₂ H ₃ O ₂) ₃ (aq) + <u>3</u> Ca(C ₂ H ₃ O ₂) ₃ (aq) - <u>2</u> Al(C ₂ H ₃ O ₂) ₃ (aq) + <u>3</u> Ca(C ₂ H ₃ O ₂) ₃ (aq) - <u>2</u> Al(C ₂ H ₃ O ₂) ₃ (aq) - <u>3</u> Ca(C ₂ H ₃ O ₂) ₃ (aq) - <u>3</u> Ca(C ₂ H ₃ O ₂) ₃ (aq) - <u>3</u> Ca(C ₂ H ₃ O ₂) ₃ (aq) - <u>3</u> Ca(C ₂ H ₃ O ₂) ₃ (aq) - <u>3</u> Ca(C ₂ H ₃ O ₂) ₃ (aq) - <u>3</u> Ca(C ₂ H ₃ O ₂) ₃ (aq) - <u>3</u> Ca(C ₂ H ₃ O ₂) ₃ (aq) - <u>3</u> Ca(C ₂ H ₃ O ₂) ₃ (aq) - <u>3</u> Ca(C ₂ H ₃ O ₂) ₃ (aq) - <u>3</u> Ca(C ₂ H ₃ O ₂) ₃ (aq) - <u>3</u> Ca(C ₂ H ₃ O ₂) ₃ (aq) - <u>3</u> Ca(C ₂ H ₃ O ₂) ₃ (aq) - <u>3</u> Ca(C ₂ H ₃ O ₂) ₃ (aq) - <u>3</u> Ca(C ₂ H ₃ O ₂) ₃ (aq) - <u>3</u> Ca(C ₂ H ₃ O ₂) ₃ (aq) - <u>3</u> Ca(C ₂ H ₃ O ₂) ₃ (aq) - <u>3</u> Ca(C ₂ H ₃ O ₂) ₃ (aq) - <u>3</u> Ca(C ₂ H ₃ O ₂) ₃ (aq) - <u>3</u> Ca(C ₂ H ₃ O ₂) ₃ (aq) - <u>3</u> Ca(C ₂ H ₃ O ₂) ₃ (aq) - <u>3</u> Ca(C ₂ H ₃ O ₂) ₃ (aq) - <u>3</u> Ca(C ₂ H ₃ O ₂) ₃ (aq) - <u>3</u> Ca(C ₂ H ₃ O ₂) ₃ (aq) - <u>3</u> Ca(C ₂ H ₃ O ₂) ₃ (aq) - <u>3</u> Ca(C ₂ H ₃ O ₂) ₃ (aq) - <u>3</u> Ca(C ₂ H ₃ O ₂) ₃ (aq) - <u>3</u> Ca(C ₂ H ₃ O ₂) ₃ (aq) - <u>3</u> Ca(C ₂ H ₃ O ₂) ₃ (aq) - <u>3</u> Ca(C ₂ H ₃ O ₂) ₃ (aq) - <u>3</u> Ca(C ₂ H ₃ O ₂) ₃ (aq) - <u>3</u> Ca(C ₂ H ₃ O ₂) ₃ (aq) - <u>3</u> Ca(C ₂ H ₃ O ₂) ₃ (aq) - <u>3</u> Ca(C ₂ H ₃ O ₂) ₃ (aq) - <u>3</u> Ca(C ₂ H ₃ O ₂) ₃ (aq) - <u>3</u> Ca(C ₂ H ₃ O ₂) ₃ (aq) - <u>3</u> Ca(C ₂ H ₃ O ₂) ₃ (aq) - <u>3</u> Ca(C ₂ H ₃ O ₂) ₃ (aq) - <u>3</u> Ca(C ₂ H ₃ O ₂) ₃ (aq) - <u>3</u> Ca(C ₂ H ₃ O ₂) ₃ (aq) - <u>3</u> Ca(C ₂ H ₃ O ₂) ₃ (aq) - <u>3</u> Ca(C ₂ H ₃ O ₂) ₃ (aq) - <u>3</u> Ca(C ₂ H ₃ O ₂) ₃ (aq) - <u>3</u> Ca(C ₂ H ₃ O ₂) ₃ (aq) - <u>3</u> Ca(C ₂ H ₃ O ₂) ₃ (aq) - <u>3</u> Ca(C ₂ H ₃ O ₂) ₃ (aq) - <u>3</u> Ca(C ₂ H ₃ O ₂) ₃ (aq) - <u>3</u> Ca(C ₂ H ₃ O ₂) ₃ (aq) - <u>3</u> Ca(C ₂ H ₃ O ₂) ₃ (aq) - <u>3</u> Ca(C ₂ H ₃ O ₂) ₃ (aq) - <u>3</u> Ca(C ₂ H ₃ O ₂) ₃ (aq) - <u>3</u> Ca(C ₂ H ₃ O ₂) ₃ (aq) - <u>3</u> Ca(C ₂ H ₃ O ₂) ₃ (aq) - <u>3</u> Ca(C ₂ H ₃ O ₂) ₃ (aq) - <u>3</u> Ca(C ₂ H ₃ O ₂) ₃ (aq) - <u>3</u> Ca(C ₂ H ₃ O ₂) ₃ (aq) - <u>3</u> Ca(C ₂ H ₃ O ₂) ₃ (aq) - <u>3</u> Ca(C ₂ H ₃ O ₂) ₃ (aq) - <u>3</u> Ca(C ₂ H ₃ O ₂) ₃ (aq) - <u>3</u> Ca	$aSO_4(s)$ 8

[6 pt] 9. Define each of the following terms, list what type of molecules have these properties and give an example compound for each.

	Definition	Class of Molecules	Example
Strong Electrolyte	Dissociates 100% into ions	Strong Acids Strong Bases Ionic (aq)	$\begin{array}{l} \mathrm{H_2SO_4~etc.}\\ \mathrm{NaOH~etc.}\\ \mathrm{NaCl(aq)~etc.} \end{array}$
Weak Electrolyte	Dissociate $< 10\%$ into ions	Weak Acids Weak Acids	$\begin{array}{c} \mathrm{CHC}_{2}\mathrm{H}_{3}\mathrm{O}_{2} \ \mathrm{etc} \\ \mathrm{NH}_{4}\mathrm{OH} \ \mathrm{etc.} \end{array}$
Non-Electrolyte	Do not dissociate when dissolved in water	Molecular Compounds Ionic (s)	CHO etc. PbI ₂ Etc.

[4 pt] 10. Write the total ionic equation and the net ionic equation for the following reaction:

$$\begin{split} & 2 \operatorname{HF}(\operatorname{aq}) + \operatorname{Mg}(\operatorname{OH})_2(\operatorname{aq}) \longrightarrow \operatorname{MgF}_2(\operatorname{aq}) + 2 \operatorname{H}_2\operatorname{O}(\operatorname{l}) \\ & 2 \operatorname{HF}(\operatorname{aq}) + \operatorname{Mg}^{+2}(\operatorname{aq}) + 2 \operatorname{OH}^-(\operatorname{aq} \longrightarrow \operatorname{Mg}_2^+(\operatorname{aq}) + 2 \operatorname{F}^-(\operatorname{aq}) + 2 \operatorname{H}_2\operatorname{O}(\operatorname{l}) \\ & 2 \operatorname{HF}(\operatorname{aq}) + 2 \operatorname{OH}^-(\operatorname{aq}) \longrightarrow 2 \operatorname{H}_2\operatorname{O}(\operatorname{l}) + 2 \operatorname{F}^-(\operatorname{aq}) \end{split}$$

[5 pt] 11. What is the oxidation number of each of the atoms in the following compounds or ions.

- (a) KMnO₄ K ___ Mn ___ O ___ K^+, Mn^{+7}, O^{-2} (b) Fe₂(CO₃)₃ Fe ___ C ___ O ___ Fe⁺³, C⁺⁴, O⁻²
- [5 pt] 12. In the following reaction write the oxidation number of each element below it. Determine which element is oxidized and which element is reduced and write it in the answer blank.

CHE 111 - Exam 4

$PbCl_2 = 278.11 \text{ g/mol}$	NaCl = 58.44 g/mol	$Pb(NO_3)_2 = 331.23 \text{ g/mol}$
$Ca(OH)_2 = 74.10 \text{ g/mol}$	$Al_2(SO_4)_3 = 342.11 \text{ g/mol}$	$\mathrm{C_2H_6} = 30.07~\mathrm{g/mol}$
$CO_2 = 44.01 \text{g/mol}$	$\rm H_2O = 18.02~g/mol$	$\mathrm{O}_2 = 16.00~\mathrm{g/mol}$
$\mathrm{H_2SO_4} = 98.09 \mathrm{~g/mol}$	$\rm H_3PO_4 = 98.00~g/mol$	NaOH = 40.00 g/mol
Na = 22.99 g/mol	$\mathrm{Fe_2O_3} = 159.70~\mathrm{g/mol}$	Al = 26.95 g/mol
Fe = 55.85 g/mol	$Al_2O_3 = 101.90 \text{ g/mol}$	

[0 pt] 13. Some useful and not so useful Molecular Weights to save you some time:

[4 pt] 14. What is the Molarity of a solution made from 25.0 g of Ca(OH)₂ added to 350.0 mL of 14. 0.964 M Ca(OH)₂ water?

 $\frac{25.0\,\mathrm{g\,Ca(OH)_2}}{350\,\mathrm{mL}}\times\frac{1\,\mathrm{mol\,Ca(OH)_2}}{74.10\,\mathrm{g\,Ca(OH)_2}}\times\frac{1\,\mathrm{mL}}{0.001\,\mathrm{L}}=0.963948$

[4 pt] 15. How many O atoms are in 25.0 g of $Al_2(SO_4)_3$? 25.0 g Al (SO) = 1 mol Al (SO) = 6.02 × 10²³ molec = 12 store O

$$\frac{1 \operatorname{mol} \operatorname{Al}_2(\operatorname{SO}_4)_3}{342.11 \operatorname{g} \operatorname{Al}_2(\operatorname{SO}_4)_3} \times \frac{6.02 \times 10^{23} \operatorname{molec.}}{1 \operatorname{mol} \operatorname{Al}_2(\operatorname{SO}_4)_3} \frac{12 \operatorname{atoms} O}{1 \operatorname{molecule} \operatorname{Al}_2(\operatorname{SO}_4)_3} = 5.2790 \times 1023$$

$$\frac{28.75\,\mathrm{g\,C_2H_6}}{30.07\,\mathrm{g\,C_2H_6}} \times \frac{1\,\mathrm{mol\,C_2H_6}}{30.07\,\mathrm{g\,C_2H_6}} \times \frac{6\,\mathrm{mol\,H_2O}}{2\,\mathrm{mol\,C_2H_6}} \times \frac{18.02\,\mathrm{g\,H_2O}}{1\,\mathrm{mol\,H_2O}} = 51.686897$$

- $[5 \text{ pt}] 17. \text{ In a titration, it took 115.0 mL of } 0.38 \text{ M H}_3\text{PO}_4 \text{ to neutralize 45.0 mL of an unknown 17. } 1.5 \text{ M Ca(OH)}_2 \text{ concentration of Ca(OH)}_2. \text{ What is the concentration of the Ca(OH)}_2 \text{ solution?} \\ \underline{2 \text{ H}_3\text{PO}_4(\text{aq}) + \underline{3} \text{ Ca(OH)}_2(\text{aq}) \longrightarrow \underline{1} \text{ Ca}_3(\text{PO}_4)_2(\text{aq}) + \underline{6} \text{ H}_2\text{O}} \\ \underline{115.0 \text{ mL H}_3\text{PO}_4} \times \frac{0.001 \text{ L}}{1 \text{ mL}} \times \frac{0.38 \text{ mol H}_3\text{PO}_4}{1 \text{ L H}_3\text{PO}_4} \times \frac{3 \text{ mol Ca(OH)}_2}{2 \text{ mol H}_3\text{PO}_4} \times \frac{1 \text{ mL}}{0.001 \text{ L}} = 1.456666 \\ \end{array}$
- [5 pt] 18. Relax, take a break. Imagine yourself on you dream vacation doing something amazing. Tell me where you are and what you are doing? (Then get back to work you slackers!)

CHE 111 - Exam 4

- [5 pt] 19. Your 3.00 g "sample" of cocaine is cut with NaCl. To determine the percentage impurity 19. <u>74.3 %</u> you react your "sample" with $Pb(NO_3)_2$ to produce 5.30 g of $PbCl_2$ precipitate. What is the percentage of NaCl in your cocaine?
- [8 pt] 20. An unknown hydrocarbon (CxHy) was combusted to produce 22.72 g $\rm CO_2$ and 11.62 g of H₂O. The molecular weight of the original compound is 58.119 g/mol.

(a) What is the percentage of Carbon?	20(a) _	82.67%
(b) What is the percentage of Hydroen?	20(b) _	17.33%
(c) What is the Empirical Formula of the compound?	20(c) _	C_2H_5
(d) What is the Molecular Formula of the compound?	20(d) _	C_4H_{10}

[21 pt] 21. You perform a reaction in lab starting with 50.0 g of Fe_2O_3 and 75.0 g Al. Show all calculations in the space provided.

$$\underline{1}\operatorname{Fe}_2O_3(s) + \underline{2}\operatorname{Al}(s) \longrightarrow \underline{2}\operatorname{Fe}(l) + \underline{1}\operatorname{Al}_2O_3(l) + 250kJ$$

(a) What is the limiting reactant? 21(a)
$$\underline{Fe_2O_3}$$

 $\frac{50.0 \text{ g } Fe_2O_3}{159.7 \text{ g } Fe_2O_3} \times \frac{1 \mod Fe_2O_3}{1 \mod Fe_2O_3} \times \frac{55.845 \text{ g } Fe}{1 \mod Fe} = 34.9686$
 $\frac{75.0 \text{ g } \text{Al}}{26.982 \text{ g } \text{Al}} \times \frac{1 \mod \text{Al}}{2 \mod \text{Al}} \times \frac{1 \mod Fe}{2 \mod \text{Al}} \times \frac{55.845 \text{ g } \text{Fe}}{1 \mod \text{Fe}} = 77.7006$
(b) How many grams of the excess reagent will be left over? 21(b) $\underline{-58.1 \text{ g } \text{Al}}$
 $\frac{50.0 \text{ g } Fe_2O_3}{159.7 \text{ g } Fe_2O_3} \times \frac{2 \mod \text{Al}}{1 \mod Fe_2O_3} \times \frac{26.982 \text{ g } \text{Al}}{1 \mod \text{Al}} = 16.895$
Start - End = Left Over
 $75.0 - 16.9 = 58.1$
(c) What is the theoretical yield in grams of Fe in grams? 21(c) $35.0 \text{ g } \text{Fe}_2O_3$
See part (a)
(d) What is the theoretical yield in grams of Al₂O₃ in grams? 21(d) $31.9 \text{ g } \text{Al}_2O_3$
See part (a)
(e) What is the percent yield if you performed the reaction and produced 23.0 21(e) $\underline{-65.7\%}$
grams of Fe?
Percent Yield = $\frac{\text{Actual Yield}}{\text{Theoretical Yield}} \times 100$
 $\frac{23.0}{35.0} \times 100 = 65.71$
(f) How many Joules of heat will be released? 21(f) $\underline{-78,300 \text{ J}}$
 $\frac{50.0 \text{ g } Fe_2O_3}{159.7 \text{ g } Fe_2O_3} \times \frac{250 \text{ kJ}}{1 \mod Fe_2O_3} \times \frac{1000J}{1 \text{ kJ}} = 78,271.76$

21(g) **_____78,300 J**

(g) Does the reaction obey Lavoisier Law? Explain.

Page 5 of 5