\qquad Date: \qquad
Instructions: Answer the following questions. Show ALL work for problems to receive full credit. Make sure to include proper units and significant figures for all answers.

Complete and balance the following reactions. Indicate the state (solid, liquid or gas) of the products when known. If heat is produced as a product include it. If no reaction occurs write NR in the answer blank.
$[3 \mathrm{pt}] \quad 1 . _\mathrm{C}_{3} \mathrm{H}_{8}(\mathrm{l})+\ldots \mathrm{O}_{2}(\mathrm{~g}) \longrightarrow$

1. \qquad
[3 pt] \qquad $\mathrm{HF}(\mathrm{aq})+$ \qquad $\mathrm{Ca}(\mathrm{OH})_{2}(\mathrm{aq}) \longrightarrow$
2. \qquad
[3 pt] \qquad $\mathrm{Cl}_{2}(\mathrm{~g})+\ldots \mathrm{CaF}_{2}(\mathrm{aq}) \longrightarrow$
3. \qquad
4. \qquad
5. \qquad

$$
[3 \mathrm{pt}]
$$

\qquad $K(s)+$ \qquad $\mathrm{Na}_{2} \mathrm{CO}_{3}(\mathrm{aq}) \longrightarrow$
6. \qquad
[3 pt]
7. $\ldots \mathrm{CaCl}_{2}(\mathrm{aq})+\ldots \mathrm{F}_{2}(\mathrm{~g}) \longrightarrow$
7. \qquad
[3 pt] \qquad $\mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3}(\mathrm{aq})+{ }_{-}$ $\mathrm{Ca}\left(\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}\right)_{2}(\mathrm{aq}) \longrightarrow$
8. \qquad
[6 pt] 9. Define each of the following terms, list what type of molecules have these properties and give an example compound for each.

	Definition	Class of Molecules	Example
Strong Electrolyte			
Weak Electrolyte			
Non-Electrolyte			

[4 pt] 10. Write the total ionic equation and the net ionic equation for the following reaction:

$$
2 \mathrm{HF}(\mathrm{aq})+\mathrm{Mg}(\mathrm{OH})_{2}(\mathrm{aq}) \longrightarrow \mathrm{MgF}_{2}(\mathrm{aq})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})
$$

[5 pt] 11. What is the oxidation number of each of the atoms in the following compounds or ions.
(a) KMnO_{4}
K \qquad Mn \qquad O \qquad
(b) $\mathrm{Fe}_{2}\left(\mathrm{CO}_{3}\right)_{3}$
Fe \qquad
C \qquad
O \qquad
[5 pt] 12. In the following reaction write the oxidation number of each element below it. Determine which element is oxidized and which element is reduced and write it in the answer blank.
$\underline{1} \mathrm{Fe}(\mathrm{s})+\underset{5}{5} \mathrm{VCl}_{3}(\mathrm{aq}) \longrightarrow \underline{5} \mathrm{~V}(\mathrm{~s})+{ }_{1} \mathrm{FeCl}_{5}(\mathrm{aq})$
Oxidized: \qquad
 \qquad
[0 pt] 13. Some useful and not so useful Molecular Weights to save you some time:

$\mathrm{PbCl}_{2}=278.11 \mathrm{~g} / \mathrm{mol}$	$\mathrm{NaCl}=58.44 \mathrm{~g} / \mathrm{mol}$	$\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}=331.23 \mathrm{~g} / \mathrm{mol}$
$\mathrm{Ca}(\mathrm{OH})_{2}=74.10 \mathrm{~g} / \mathrm{mol}$	$\mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3}=342.11 \mathrm{~g} / \mathrm{mol}$	$\mathrm{C}_{2} \mathrm{H}_{6}=30.07 \mathrm{~g} / \mathrm{mol}$
$\mathrm{CO}_{2}=44.01 \mathrm{~g} / \mathrm{mol}$	$\mathrm{H}_{2} \mathrm{O}=18.02 \mathrm{~g} / \mathrm{mol}$	$\mathrm{O}_{2}=16.00 \mathrm{~g} / \mathrm{mol}$
$\mathrm{H}_{2} \mathrm{SO}_{4}=98.09 \mathrm{~g} / \mathrm{mol}$	$\mathrm{H}_{3} \mathrm{PO}_{4}=98.00 \mathrm{~g} / \mathrm{mol}$	$\mathrm{NaOH}=40.00 \mathrm{~g} / \mathrm{mol}$
$\mathrm{Na}=22.99 \mathrm{~g} / \mathrm{mol}$	$\mathrm{Fe}_{2} \mathrm{O}_{3}=159.70 \mathrm{~g} / \mathrm{mol}$	$\mathrm{Al}=26.95 \mathrm{~g} / \mathrm{mol}$
$\mathrm{Fe}=55.85 \mathrm{~g} / \mathrm{mol}$	$\mathrm{Al}_{2} \mathrm{O}_{3}=101.90 \mathrm{~g} / \mathrm{mol}$	

[4 pt] 14. What is the Molarity of a solution made from 25.0 g of $\mathrm{Ca}(\mathrm{OH})_{2}$ added to 350.0 mL of 14 . water?
[4 pt] 15. How many O atoms are in 25.0 g of $\mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3}$?
15. \qquad
[4 pt] 16. How many grams of $\mathrm{H}_{2} \mathrm{O}$ can be produced by burning 28.75 grams of $\mathrm{C}_{2} \mathrm{H}_{6}$?
16. \qquad $\underline{2} \mathrm{C}_{2} \mathrm{H}_{6}(\mathrm{~g})+\underline{7} \mathrm{O}_{2}(\mathrm{~g}) \longrightarrow \underline{4} \mathrm{CO}_{2}(\mathrm{~g})+\underline{6} \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$
[5 pt] 17. In a titration, it took 115.0 mL of $0.38 \mathrm{M} \mathrm{H}_{3} \mathrm{PO}_{4}$ to neutralize 45.0 mL of an unknown 17 . concentration of $\mathrm{Ca}(\mathrm{OH})_{2}$. What is the concentration of the $\mathrm{Ca}(\mathrm{OH})_{2}$ solution? $\underline{2} \mathrm{H}_{3} \mathrm{PO}_{4}(\mathrm{aq})+\underline{3} \mathrm{Ca}(\mathrm{OH})_{2}(\mathrm{aq}) \longrightarrow \underline{1} \mathrm{Ca}_{3}\left(\mathrm{PO}_{4}\right)_{2}(\mathrm{aq})+\underline{6} \mathrm{H}_{2} \mathrm{O}$
[5 pt] 18. Relax, take a break. Imagine yourself on you dream vacation doing something amazing. Tell me where you are and what you are doing? (Then get back to work you slackers!)
[5 pt] 19. Your 3.00 g "sample" of cocaine is cut with NaCl . To determine the percentage impurity 19. you react your "sample" with $\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}$ to produce 5.30 g of PbCl_{2} precipitate. What is the percentage of NaCl in your cocaine?
[8 pt] 20. An unknown hydrocarbon (CxHy) was combusted to produce 22.72 g CO 2 and 11.62 g of $\mathrm{H}_{2} \mathrm{O}$. The molecular weight of the original compound is $58.119 \mathrm{~g} / \mathrm{mol}$.
(a) What is the percentage of Carbon?
(b) What is the percentage of Hydroen?
(c) What is the Empirical Formula of the compound?
\qquad
20(c) \qquad
(d) What is the Molecular Formula of the compound?
[21 pt] 21. You perform a reaction in lab starting with 50.0 g of $\mathrm{Fe}_{2} \mathrm{O}_{3}$ and 75.0 g Al . Show all calculations in the space provided.

$$
\underline{1} \mathrm{Fe}_{2} \mathrm{O}_{3}(\mathrm{~s})+\underline{2} \mathrm{Al}(\mathrm{~s}) \longrightarrow \underline{2} \mathrm{Fe}(\mathrm{l})+\underline{1} \mathrm{Al}_{2} \mathrm{O}_{3}(\mathrm{l})+250 \mathrm{~kJ}
$$

(a) What is the limiting reactant?

21(a) \qquad
(b) How many grams of the excess reagent will be left over?

21(b) \qquad
(c) What is the theoretical yield in grams of Fe in grams? \qquad
(d) What is the theoretical yield in grams of $\mathrm{Al}_{2} \mathrm{O}_{3}$ in grams? \qquad
(e) What is the percent yield if you performed the reaction and produced 23.021 (e) \qquad grams of Fe ?
(f) How many Joules of heat will be released?

21(f) \qquad
(g) Does the reaction obey Lavoisier Law? Explain. \qquad

