General

Amino Acids

Amino Acids:

- Building blocks for peptides, proteins
- Some individually important (or converted to important molecules)
 - Gly, Glu, Tyr → neurotransmitters
 - Tyr → parent/precursor for epinephrine (adrenaline)
 - His → stomach secretes HCl, symptoms for inflammation, colds.
- Essential (10)
 - needed for normal health
 - not synthesized by the body
 - must be supplied by diet
- Complete (animal) vs. Incomplete (vegetable) protein

Structure

Amino Acids

Amino Acid Structure:

- Amide, CA, R-group (variable)
- D/L Isomers

COOH

Side Chains

Amino Acids

AA – Side Chains:

- Side chains determine the functionality of the AA b/c the –COOH and –NH₂ groups react to form the backbone
- 3 letter abbreviations (given on cheat sheet)

Classification	Functional Group	Property
Nonpolar	-R (aliphatic or aromatic)	Hydrophobic
Polar	-COOH, -NH ₂ , -OH	Hydrophilic
Acidic	-COOH (extra)	Lose H ₂ → anion → Salt Bridges
Basic	-NH ₂ (extra)	Gain H ₂ → cation → Salt Bridges

Zwitterion

Zwitterion: dipolar form of AA, found at biological pH's (internal acid/base Rxn)

Amphoteric

Amphoteric: molecules with properties of both acid and base

alanine zwitterion

alanyl ammonium cation

Polypeptides

Formation of

Formation Reaction:

- Dehydration reaction
- CA + Amine → Amide
- Amide structure/Peptide bond/Peptide linkage

Bonds

Amide/Peptide

Polypeptides

Polypeptides:

- Small chains of AA (40-50 units)
- Many ways to connect together (N!)
- ~30 biologically relevant ones
- Hormones or Nerve transmitters
- Small changes structure → HUGE changes in functionality

Name	Primary structure	General biological function
Substance P	Arg-Pro-Lys-Pro-Gln-Gln- Phe-Phe-Gly-Leu-Met-NH ₂	Is a pain-producing agent
Bradykinin	Arg-Pro-Pro-Gly-Phe-Ser- Pro-Phe-Arg	Affects tissue inflammation and blood pressure
Angiotensin II	Asp-Arg-Val-Tyr-Val- His-Pro-Phe	Maintains water balance and blood pressure
Leu-enkephalin Met-enkephalin	Tyr-Gly-Gly-Phe-Leu Tyr-Gly-Gly-Phe-Met	Relieves pain, produces sense of well-being
Vasopressin	S—S—S— Cys-Tyr-Phe-Gln-Asn-Cys- Pro-Arg-Gly-NH ₂	Increases blood pressure, decreases kidney water excretion
Oxytocin	S—S— Cys-Tyr-Ile-Gln-Asn-Cys- Pro-Leu-Gly-NH ₂	Initiates childbirth labor, causes mammary glan milk release, affects kidney excretion of water and sodium
Thyrotropin-releasing hormone	Glu-His-Pro	Stimulates release of hormones from the pituita
Orexin	33 amino acids long	Causes wakefulness
Neuropeptide FF	Phe-Leu-Phe-Gln-Pro-Gln- Arg-Phe-NH ₂	Modulates pain sensations
Neurotensin	Glu-Leu-Tyr-Glu-Asn-Lys- Pro-Arg-Arg-Pro-Tyr-Ile-Leu	Involved in brain memory functions
Neuropeptide Y	36 amino acids long	Stimulates eating
Endomorphin	Tyr-Pro-Trp-Phe-NH2	Acts as a morphine-like analgesic

Structure

Protein

Proteins – General:

> 50 AA

Quaternary

- Linus Pauling 1954 Nobel Prize $\rightarrow \alpha$ -helix and β -pleated sheet
- Fredrick Sanger 1958 -> Primary structure of heef insulin

Treatick Saliger 1556 7 Tilliary Structure of beer insulin			
	Classification	Description	Examples
	Primary	#, kind, type and sequence of AA	
	Secondary	Regular 3D structure, held	α-helix β-pleated sheet

Complex proteins

Primary	#, kind, type and sequence of AA
Secondary	Regular 3D structure, held together by H-bonds in backbone

Distinct 3D structure due to

Tertiary

interactions between R-groups

Ionic bonds (Salt Bridges)

Disulfide bonds

Hydrophilic Multiple units

Hydrophobic

Non-protein parts Metal ions

triple helix H-bonds

Primary Structure

Primary Structure:

- #, kind, type, and sequence of AA
- Fredrick Sanger (1958 Nobel Prize) Beef Insulin
- Several years of work to sequence 51 AA
- Hydrolyzed proteins into smaller fragments to analyze

Fragment 1: Gly-Glu-Arg Gly-Phe-Phe-Tyr-Thr-Pro-Lys Combined: Gly-Glu-Arg Gly-Phe-Phe-Tyr-Thr-Pro-Lys Overlap

Edman Degradation – split AA at N-Terminal End

Secondary Structure

Tertiary Structure

Tertiary Structure:

- Determined by interactions between R-groups
- H-bonds: -COOH and -OH

Ionic/Salt Bridges

Disulfide Bonds

- Hydrophobic (form core of protein)
- Hydrophilic (face outwards to interact with water)

Quaternary Structure

Quaternary Structure:

- Multiple protein units
- Non-protein parts
- Metal ions
- Ex: Hemoglobin
 - 4 subunits
 - Fe atoms

Summary

Protein Structure

Pleated sheet

- (b) Secondary structure with folding as a result of hydrogen bonding (dotted red lines)
- (c) Tertiary structure with secondary folding caused by interactions within the polypeptide and its immediate environment

(d) Quaternary structure
— the relationships
between individual
subunits

α-Helix

α-helix Structure:

- Secondary
- Determined by <u>H-bonds</u> between AA-backbone
- α-helix → AA 4 residues apart, R-groups towards outside

β-Pleated Sheet

β-pleated sheet structure:

- Secondary
- Determined by <u>H-bonds</u> between AAbackbone
- β-pleated sheet → AA far apart, Rgroups face outwards

H-bonds

Secondary H-bonds:

- Between the C=O and NH of backbone
- Responsible for secondary structure

Tertiary H-bonds:

- Between the C=O and -NH or -OH of R-groups
- Responsible for tertiary structure

Salt Bridges

Ionic Bonds/Salt Bridges:

- Tertiary Structure
- Between –COO⁻ and –NH3⁺ groups

Disulfide Bonds

Disulfide bonds:

- Tertiary Structure
- Between -SH and –SH groups
- Mainly between Cys-Cys

Interactions

Hydrophobic

Hydrophobic Interactions:

- **Tertiary Structure**
- Between -R groups (Alkane and Aromatic)
- Interior of proteins to avoid water

HYDROPHOBIC AMINO ACIDS

Interactions

Hydrophilic

Hydrophilic Interactions:

- Tertiary Structure
- Exterior of proteins to interact with water

(His or H)

- Polar groups (OH)
- Acidic groups (COOH)
- Basic groups (NH₂)

Basic amino acids

COO-COO. COO. ĊH₂ ĊH₂ ĊH, ŃΗ NH₃ C=NH,+ NH₂ Lysine Arginine Histidine

(Arg or R)

(Lys or K)

Acidic amino acids

Serine (Ser or S) (Thr or T)

(Asn or N)

Glutamine (Gln or Q)

Structure

Identify 2°/3°

Protein Functions

Protein Functions:

- Structural Support skin, connective tissue
- Storage Fe in Liver
- Transport O₂ in Hemoglobin
- Defense antibodies, venom
- Motion/Movement muscles
- Regulation blood/glucose/insulin
- Catalysis Enzymes (Ch. 30!)

Denaturation

Denaturation: Loss of 3D conformation in a protein

- Disruption of 2°/3°/4° interactions
- Does NOT break 1° structure (hydrolysis)
- Loss of biological activity
- Causes of Denaturation

	Cause	Example
1.	Heat	Cooking
2.	Acids/Base (pH)	Lactic Acid
3.	Organic Molecules	Ethanol/Isopropanol
4.	Heavy Metals	Pb, Hg
5.	Agitation	Stirring
6.	UV Light	
7.	Enzymes	Digestion
8.	Salts	Water purification

Test

Xanthoproteic

Xanthoproteic Test:

- Detects Benzene rings
- Yellow color
- Phe, Try, Tyr

Test

Biuret

Biuret Test:

- Detects tri-peptides (must have at least 2 peptide bonds)
- Cu₂SO₄
- Violet color

Test

Ninhydrin

Ninhydrin Test:

- General test for AA
- All AA → blue
- Pro, hydroxyproline \rightarrow yellow
- Very sensitive 1 μg (10⁻⁶)

Chromatography

Chromatography: separation technique for AA

- Difference in distribution between two phases
 - Solubility
 - o Charge
- TLC (thin-layer) solid/liquid phase
 - Solvent Front (rate solvent moves)
 - Differences in <u>solubility</u> cause AA to travel at different rates in the solvent
- Column chromatography (variation of above)

Electrophoresis

Electrophoresis: separation technique for AA

- Charged particles separate in electric field (zwitterions)
- Separation based on
 - Size friction (sieve)
 - O Charge electric field
- Types
 - SDS masks charge/separate by mass/size
 - Isoelectric Focusing AA separated by charge
 - o 2D separate on both.

At beginning of electrophoresis

At a later time

Fredrick Sanger

Fredrick Sanger:

- Solved structure of beef insulin (1955)
- Nobel prize 1958
- 51 AA in two chains held together by disulfide bonds
- DFNB + N-terminal end + hydrolysis to solve structure
- "Paper shredder"

