\qquad

1. What is the molecular weight of $\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}$
2. \qquad
3. What is the molecular weight of $\mathrm{Al}\left(\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}\right)_{3}$
4. \qquad
5. What is the molecular weight of $\mathrm{Sc}_{2}\left(\mathrm{C}_{2} \mathrm{O}_{4}\right)_{3}$
6. \qquad
7. What is the molarity of a solution made from 25.0 grams of $\mathrm{Mg}(\mathrm{OH})_{2}$ dissolved in 175.0 mL of water?
8. \qquad
9. How many grams of HCl are required to make 105.0 mL of 2.75 M HCl ?
10. \qquad
11. Given the reaction: $2 \mathrm{NaOH}(\mathrm{aq})+1 \mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{aq}) \longrightarrow 1 \mathrm{Na}_{2} \mathrm{SO}_{4}(\mathrm{aq})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})$ how many grams of $\mathrm{Na}_{2} \mathrm{SO}_{4}$ can be produced from 25.0 grams of NaOH .
12. \qquad
13. What is the molarity of a solution made from 25.0 grams of NaOH dissolved in 350.0 mL of water?
14.
15. \qquad
16. 27.5 mL of 0.35 M NaOH is how many grams of NaOH ?
17. \qquad
18. Jay performed a titration and noted that 225.0 mL of 0.85 M NaOH completely neutralized 175 mL of $\mathrm{H}_{2} \mathrm{SO}_{4}$. What is the Molarity of the $\mathrm{H}_{2} \mathrm{SO}_{4}$ solution? (Hint: $2 \mathrm{NaOH}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{aq}) \longrightarrow 2 \mathrm{HOH}(\mathrm{l})+$ $\mathrm{Na}_{2} \mathrm{SO}_{4}(\mathrm{aq})+$ heat.
19. \qquad
20. Jay performed a titration and noted that 15.0 mL of 8.0 M NaOH completely neutralized an unknown volume of $6.5 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4}$. What is the volume (in mL) of the $\mathrm{H}_{2} \mathrm{SO}_{4}$ solution? (Hint: $2 \mathrm{NaOH}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{aq}) \longrightarrow$ $2 \mathrm{HOH}(\mathrm{l})+\mathrm{Na}_{2} \mathrm{SO}_{4}(\mathrm{aq})+$ heat.
21. \qquad
22. How many grams of HCl are required to make 750.0 mL of 3.000 M HCl ?
23. \qquad
24. What is the molarity of a solution made from 15.0 grams of AgNO_{3} dissolved in 275.0 mL of water?
25. \qquad
26. Answer the following questions about the given the reaction: $2 \mathrm{H}_{3} \mathrm{PO}_{4}(\mathrm{aq})+3 \mathrm{Mg}(\mathrm{OH})_{2}(\mathrm{aq}) \longrightarrow 1 \mathrm{Mg}_{3}\left(\mathrm{PO}_{4}\right)_{2}(\mathrm{aq})+6 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})+12.0 \mathrm{~kJ}$
(a) How many grams of $\mathrm{Mg}_{3}\left(\mathrm{PO}_{4}\right)_{2}$ can be produced from 125.0 grams of $\mathrm{Mg}(\mathrm{OH})_{2} .14(\mathrm{a})$ \qquad
(b) How many grams of $\mathrm{H}_{3} \mathrm{PO}_{4}$ are required to react with 11.0 grams of $\mathrm{Mg}(\mathrm{OH})_{2}$. 14 (b) \qquad
27. Bob performed a titration and noted that 75.0 mL of $0.65 \mathrm{M} \mathrm{Mg}(\mathrm{OH})_{2}$ completely neutralized 250.0 mL of HCl . What is the Molarity of the HCl solution?
Hint: $1 \mathrm{Mg}(\mathrm{OH})_{2}(\mathrm{aq})+2 \mathrm{HCl}(\mathrm{aq}) \longrightarrow 2 \mathrm{HOH}(\mathrm{l})+\mathrm{MgCl}_{2}(\mathrm{aq})$.
28. \qquad
29. How many mL of 0.55 M NaOH are required to neutralize 195.0 mL of $1.87 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4}$?

Hint: $1 \mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{aq})+2 \mathrm{NaOH}(\mathrm{aq}) \longrightarrow 2 \mathrm{HOH}(\mathrm{l})+1 \mathrm{Na}_{2} \mathrm{SO}_{4}(\mathrm{aq})$.
16. \qquad
17. Todd performed a titration and noted that 115.0 mL of $0.85 \mathrm{M} \mathrm{Mg}(\mathrm{OH})_{2}$ completely neutralized 135.0 mL of $\mathrm{H}_{3} \mathrm{PO}_{4}$. What is the Molarity of the $\mathrm{H}_{3} \mathrm{PO}_{4}$ solution?
Hint: $3 \mathrm{Mg}(\mathrm{OH})_{2}(\mathrm{aq})+2 \mathrm{H}_{3} \mathrm{PO}_{4}(\mathrm{aq}) \longrightarrow 6 \mathrm{HOH}(\mathrm{l})+\mathrm{Mg}_{3}\left(\mathrm{PO}_{4}\right)_{2}(\mathrm{~s})$.
17. \qquad
18. How many mL of $3.25 \mathrm{M} \mathrm{Mg}(\mathrm{OH})_{2}$ are required to neutralize 240.0 mL of $1.25 \mathrm{M} \mathrm{H}_{3} \mathrm{PO}_{4}$?

Hint: $3 \mathrm{Mg}(\mathrm{OH})_{2}(\mathrm{aq})+2 \mathrm{H}_{3} \mathrm{PO}_{4}(\mathrm{aq}) \longrightarrow 6 \mathrm{HOH}(\mathrm{l})+\mathrm{Mg}_{3}\left(\mathrm{PO}_{4}\right)_{2}(\mathrm{~s})$.
18. \qquad
19. Jay is baking apple pies using the following recipe: 3 Apples +2 cups sugar +5 teaspoons Cinnamon + 4 cups Flour $\longrightarrow 2.5$ apple pies. In my cupboard I have the following: 24 apples, 10 cups of Sugar, 30 teaspoons of Cinnamon and 25 cups of Flour. Answer the following questions:
(a) What is the limiting ingredient?

19(a)
(b) Amount of Apples left:

19(b) \qquad 19(c)
\qquad
19(e) \qquad
(e) Amount of Flour left:

19(f) \qquad
20. Given the reaction: $3 \mathrm{Mg}(\mathrm{OH})_{2}(\mathrm{aq})+2 \mathrm{H}_{3} \mathrm{PO}_{4}(\mathrm{aq}) \longrightarrow \mathrm{Mg}_{3}\left(\mathrm{PO}_{4}\right)_{2}(\mathrm{aq})+6 \mathrm{HOH}+543 \mathrm{~kJ}$ 25.0 g of $\mathrm{Mg}(\mathrm{OH})_{2}$ was reacted with 50.0 g of $\mathrm{H}_{3} \mathrm{PO}_{4}$. $\mathrm{MW}: \mathrm{Mg}(\mathrm{OH})_{2}=58.3258 \mathrm{~g} / \mathrm{mol}, \mathrm{H}_{3} \mathrm{PO}_{4}=97.9937$ $\mathrm{g} / \mathrm{mol}, \mathrm{Mg}_{3}\left(\mathrm{PO}_{4}\right)_{2}=262.87 \mathrm{~g} / \mathrm{mol}$, and $\mathrm{HOH}=18.0158 \mathrm{~g} / \mathrm{mol}$.
(a) What was the limiting reactant? \qquad
(b) Moles $\mathrm{Mg}(\mathrm{OH})_{2}$ left:

20(b) \qquad
(c) Moles $\mathrm{H}_{3} \mathrm{PO}_{4}$ left:

20(c) \qquad
(d) Moles $\mathrm{Mg}_{3}\left(\mathrm{PO}_{4}\right)_{2}$ left: \qquad
(e) Moles HOH left:

20(e) \qquad
(f) Is the reaction Endothermic or Exothermic?

20(f) \qquad
(g) How much heat is consumed/produced in the reaction?

20(g) \qquad
21. Given the reaction: $2 \mathrm{Al}(\mathrm{OH})_{3}()+3 \mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{aq}) \longrightarrow \mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3}(\mathrm{~s})+6 \mathrm{HOH}+115 \mathrm{~kJ}$
35.75 g of $\mathrm{Al}(\mathrm{OH})_{3}$ was reacted with 40.25 g of $\mathrm{H}_{2} \mathrm{SO}_{4}$.

MW: $\mathrm{Al}(\mathrm{OH})_{3}=77.97 \mathrm{~g} / \mathrm{mol}, \mathrm{H}_{2} \mathrm{SO}_{4}=98.09 \mathrm{~g} / \mathrm{mol}, \mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3}=342.11 \mathrm{~g} / \mathrm{mol}$, and $\mathrm{H}_{2} \mathrm{O}=18.02 \mathrm{~g} / \mathrm{mol}$.
(a) What was the limiting reactant?
(b) Moles $\mathrm{H}_{2} \mathrm{SO}_{4}$ left:
\qquad
(b) $\mathrm{H}_{2} \mathrm{SO}_{4}$
\qquad
(c) Moles $\mathrm{Al}(\mathrm{OH})_{3}$ left: 21(c) \qquad
(d) Moles $\mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3}$ left:
(e) Moles $\mathrm{H}_{2} \mathrm{O}$ left:

21(d) \qquad
(f) Is the reaction Endothermic or Exothermic?
\qquad

$$
21(\mathrm{f})
$$

\qquad
(g) How much heat is consumed/produced in the reaction?

21(g) \qquad
22. Given the reaction: $2 \mathrm{C}_{2} \mathrm{H}_{6}+7 \mathrm{O}_{2} \longrightarrow 4 \mathrm{CO}_{2}+6 \mathrm{H}_{2} \mathrm{O}+75 \mathrm{~kJ}$
22.25 g of $\mathrm{C}_{2} \mathrm{H}_{6}$ was reacted with 22.05 g of O_{2}.

MW: $\mathrm{C}_{2} \mathrm{H}_{6}=30.07 \mathrm{~g} / \mathrm{mol}, \mathrm{O}_{2}=32.00 \mathrm{~g} / \mathrm{mol}, \mathrm{CO}_{2}=44.01 \mathrm{~g} / \mathrm{mol}$, and $\mathrm{H}_{2} \mathrm{O}=18.02 \mathrm{~g} / \mathrm{mol}$.
(a) What was the limiting reactant?
(b) Moles O_{2} left:

22(a) \qquad
(c) Moles $\mathrm{C}_{2} \mathrm{H}_{6}$ left:

22(b) \qquad
(d) Cl^{2}

22(c) \qquad
(d) Moles CO_{2} left:

22(d) \qquad
(e) Moles $\mathrm{H}_{2} \mathrm{O}$ left:

22(e) \qquad
(f) Is the reaction Endothermic or Exothermic?

22(f) \qquad
(g) How much heat is consumed/produced in the reaction?

22(g) \qquad
23. Answer the following questions about the reaction below. Clearly label and show work in the space provided below, or on a separate sheet of paper.
Hint: $1 \mathrm{Al}\left(\mathrm{NO}_{3}\right)_{3}(\mathrm{aq})+3 \mathrm{NaI}(\mathrm{aq})+75.0 \mathrm{~kJ} \longrightarrow 3 \mathrm{NaNO}_{3}(\mathrm{aq})+1 \mathrm{AlI}_{3}(\mathrm{~s})$.
(a) What is the limiting reagent if you start with 15.0 grams of NaI and 10.0 grams of $\mathrm{Al}\left(\mathrm{NO}_{3}\right)_{3}$? \qquad
(b) What is the theoretical yield of AlI_{3} in grams?
(c) How many grams of the excess reagent will be left over?
(d) What is the percent yield if you performed the reaction in lab and produced 12.50 grams of AlH_{3} ?
(e) Is the reaction exothermic or endothermic?

23(b) \qquad
23(c) \qquad
\qquad
23(e) \qquad
(f) How much energy (in Joules) is consumed/produced in the reaction?

$$
23(\mathrm{f})
$$

\qquad
24. Answer the following questions about the reaction below. Clearly label and show work in the space provided below, or on a separate sheet of paper.
Hint: $3 \mathrm{Mg}(\mathrm{OH})_{2}(\mathrm{aq})+2 \mathrm{H}_{3} \mathrm{PO}_{4}(\mathrm{aq}) \longrightarrow 6 \mathrm{HOH}(\mathrm{l})+1 \mathrm{Mg}_{3}\left(\mathrm{PO}_{4}\right)_{2}(\mathrm{~s})+320 . \mathrm{kJ}$.
(a) What is the limiting reagent if you start with 25.0 grams of $\mathrm{Mg}(\mathrm{OH})_{2}$ and 25.0 grams of $\mathrm{H}_{3} \mathrm{PO}_{4}$?

24(a)
(b) What is the theoretical yield in grams of $\mathrm{Mg}_{3}\left(\mathrm{PO}_{4}\right)_{2}$ in grams? \qquad
(c) How many grams of the excess reagent will be left over?

24(c) \qquad
(d) What is the percent yield if you performed the reaction and produced 12.50 grams of $\mathrm{Mg}_{3}\left(\mathrm{PO}_{4}\right)_{2}$?

24(d) \qquad
(e) Is the reaction exothermic or endothermic?

24(e) \qquad
(f) How much energy (in Joules) is consumed/produced in the reaction?

24(f) \qquad
25. Given the reaction: $\mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{aq})+2 \mathrm{NaOH}(\mathrm{aq}) \longrightarrow \mathrm{Na}_{2} \mathrm{SO}_{4}(\mathrm{aq})+2 \mathrm{H}_{2} \mathrm{O}+784 \mathrm{~kJ}$ 34.7 g of $\mathrm{H}_{2} \mathrm{SO}_{4}$ was reacted with 75.0 g of NaOH . MW: $\mathrm{H}_{2} \mathrm{SO}_{4}=98.09 \mathrm{~g} / \mathrm{mol}, \mathrm{NaOH}=40.00 \mathrm{~g} / \mathrm{mol}$, $\mathrm{Na}_{2} \mathrm{SO}_{4}=142.05 \mathrm{~g} / \mathrm{mol}$, and $\mathrm{H}_{2} \mathrm{O}=18.02 \mathrm{~g} / \mathrm{mol}$.
(a) What was the limiting reactant?

$$
\begin{aligned}
& 25(\mathrm{a}) \\
& 25(\mathrm{~b}) \\
& 25(\mathrm{c}) \\
& 25(\mathrm{~d}) \\
& 25(\mathrm{e}) \\
& 25(\mathrm{f}) \\
& 25(\mathrm{~g}) \\
& \hline
\end{aligned}
$$

(b) Grams $\mathrm{H}_{2} \mathrm{SO}_{4}$ left:
(c) Grams NaOH left:
(d) Grams $\mathrm{Na}_{2} \mathrm{SO}_{4}$ left:
(e) Grams $\mathrm{H}_{2} \mathrm{O}$ left:
(f) Is the reaction Endothermic or Exothermic?
(g) How much heat is consumed/produced in the reaction?
26. Answer the following questions about the reaction of Sodium Iodide with Barium Chloride to produce Sodium Chloride and Barium Chloride. (Clearly label and show work in the space provided below.)
$2 \mathrm{NaI}+\mathrm{BaCl}_{2}+200 \mathrm{~kJ} \longrightarrow 2 \mathrm{NaCl}+\mathrm{BaI}_{2}(\mathrm{~s})$
(a) What is the limiting reagent if you start with 50.0 grams of NaI and 35.0 grams of BaCl_{2} ?

26(a) \qquad
(b) What is the theoretical yield in grams of BaI_{2} in grams?
$26(\mathrm{~b})$
(c) How many grams of the excess reagent will be left over?
(d) What is the percent yield if you performed the reaction and produced 15.0 grams of BaI_{2} ?
(e) Is the reaction exothermic or endothermic?

26(c) \qquad
(f) How much energy is consumed/produced in the reaction?

26(d) \qquad
26(e) \qquad

26(f) \qquad

