·	Date:
1. What is the molecular weight of $\mathrm{HC}_{2}\mathrm{H}_{3}\mathrm{O}_{2}$	1
2. What is the molecular weight of $Al(C_2H_3O_2)_3$	2
3. What is the molecular weight of $Sc_2(C_2O_4)_3$	3
4. What is the molarity of a solution made from 25.0 grams of $Mg(OH)_2$ dis in 175.0 mL of water?	solved 4
5. How many grams of HCl are required to make 105.0 mL of 2.75 M HCl?	5
6. Given the reaction: 2 NaOH(aq) + 1 H ₂ SO ₄ (aq) \longrightarrow 1 Na ₂ SO ₄ (aq) + 2 H how many grams of Na ₂ SO ₄ can be produced from 25.0 grams of NaOH.	H ₂ O(l) 6
7. What is the molarity of a solution made from 25.0 grams of NaOH dissolv in 350.0 mL of water?	ved 7
8. How many grams of NaOH are required to make 250.0 mL of 1.25 M NaO $$	DH? 8
9. 27.5 mL of 0.35M NaOH is how many grams of NaOH?	9
10. Jay performed a titration and noted that 225.0 mL of 0.85 M NaOH of H_2SO_4 . What is the Molarity of the H_2SO_4 solution? (Hint: 2NaOH(a) NaOH of 0.95 (a) the transformation of the H_2SO_4 solution?	completely neutralized 175 n aq) + $H_2SO_4(aq) \longrightarrow 2HOH$
$Na_2SO_4(aq) + heat.$	10
11. Jay performed a titration and noted that 15.0 mL of 8.0 M NaOH complete of 6.5 M H_2SO_4 . What is the volume (in mL) of the H_2SO_4 solution? (His 2HOH(1) + Na SO (ag) + heat	ly neutralized an unknown von t: $2NaOH(aq) + H_2SO_4(aq)$
$2\Pi O \Pi (1) + \Pi a_2 S O_4(aq) + \Pi eat.$	11
12. How many grams of HCl are required to make 750.0 mL of 3.000 M HCl?	12
13. What is the molarity of a solution made from 15.0 grams of $AgNO_3$ disso in 275.0 mL of water?	lved 13
14. Answer the following questions about the given the reaction: $2 H_3PO_4(aq) + 3 Mg(OH)_2(aq) \longrightarrow 1 Mg_3(PO_4)_2(aq) + 6 H_2O(l) + 12.0k$	٤J
(a) How many grams of $Mg_3(PO_4)_2$ can be produced from 125.0 grams of	of Mg(OH) ₂ . 14(a)
(b) How many grams of H PO, are required to react with 11.0 grams of	$M_{\rm g}(\rm OH)_{o}$, 14(b)

- Hint: $3 \operatorname{Mg}(OH)_2(aq) + 2 \operatorname{H}_3PO_4(aq) \longrightarrow 6 \operatorname{HOH}(l) + \operatorname{Mg}_3(PO_4)_2(s).$ 18. _____

19. Jay is baking apple pies using the following recipe: 3 Apples + 2 cups sugar + 5 teaspoons Cinnamon + 4 cups Flour \longrightarrow 2.5 apple pies. In my cupboard I have the following: 24 apples, 10 cups of Sugar, 30 teaspoons of Cinnamon and 25 cups of Flour. Answer the following questions:

(a) What is the limiting ingredient?	19(a)
(b) Amount of Apples left:	19(b)
(c) Amount of Sugar left:	19(c)
(d) Amount of Cinnamon left:	19(d)
(e) Amount of Flour left:	19(e)
(f) Number of pies made:	19(f)

20. Given the reaction: $3 \operatorname{Mg(OH)}_2(\operatorname{aq}) + 2 \operatorname{H}_3 \operatorname{PO}_4(\operatorname{aq}) \longrightarrow \operatorname{Mg}_3(\operatorname{PO}_4)_2(\operatorname{aq}) + 6 \operatorname{HOH} + 543 \operatorname{kJ} 25.0 \operatorname{g} \operatorname{of} \operatorname{Mg(OH)}_2$ was reacted with 50.0 g of $\operatorname{H}_3 \operatorname{PO}_4$. MW: $\operatorname{Mg(OH)}_2 = 58.3258 \operatorname{g/mol}$, $\operatorname{H}_3 \operatorname{PO}_4 = 97.9937 \operatorname{g/mol}$, $\operatorname{Mg}_3(\operatorname{PO}_4)_2 = 262.87 \operatorname{g/mol}$, and $\operatorname{HOH} = 18.0158 \operatorname{g/mol}$.

(a)	What was the limiting reactant?	20(a)
(b)	Moles $Mg(OH)_2$ left:	20(b)
(c)	Moles H_3PO_4 left:	20(c)
(d)	Moles $Mg_3(PO_4)_2$ left:	20(d)
(e)	Moles HOH left:	20(e)
(f)	Is the reaction Endothermic or Exothermic?	20(f)
(g)	How much heat is consumed/produced in the reaction?	20(g)

21. Given the reaction: $2 \operatorname{Al}(\operatorname{OH})_3() + 3 \operatorname{H}_2 \operatorname{SO}_4(\operatorname{aq}) \longrightarrow \operatorname{Al}_2(\operatorname{SO}_4)_3(\operatorname{s}) + 6 \operatorname{HOH} + 115 \operatorname{kJ} 35.75 \operatorname{g} \operatorname{of} \operatorname{Al}(\operatorname{OH})_3$ was reacted with 40.25 g of $\operatorname{H}_2 \operatorname{SO}_4$. MW: $\operatorname{Al}(\operatorname{OH})_3 = 77.97 \operatorname{g/mol}$, $\operatorname{H}_2 \operatorname{SO}_4 = 98.09 \operatorname{g/mol}$, $\operatorname{Al}_2(\operatorname{SO}_4)_3 = 342.11 \operatorname{g/mol}$, and $\operatorname{H}_2 \operatorname{O} = 18.02 \operatorname{g/mol}$.

(a)	What was the limiting reactant?	21(a)
(b)	Moles H_2SO_4 left:	21(b)
(c)	Moles $Al(OH)_3$ left:	21(c)
(d)	Moles $Al_2(SO_4)_3$ left:	21(d)
(e)	Moles H_2O left:	21(e)
(f)	Is the reaction Endothermic or Exothermic?	21(f)
(g)	How much heat is consumed/produced in the reaction?	21(g)

22. Given the reaction: $2 C_2 H_6 + 7 O_2 \longrightarrow 4 CO_2 + 6 H_2 O + 75 kJ$ 22.25 g of $C_2 H_6$ was reacted with 22.05 g of O_2 . MW: $C_2 H_6 = 30.07 \text{ g/mol}, O_2 = 32.00 \text{ g/mol}, CO_2 = 44.01 \text{ g/mol}, \text{ and } H_2 O = 18.02 \text{ g/mol}.$

(a)	What was the limiting reactant?	22(a)
(b)	Moles O_2 left:	22(b)
(c)	Moles C_2H_6 left:	22(c)
(d)	Moles CO_2 left:	22(d)
(e)	Moles H_2O left:	22(e)
(f)	Is the reaction Endothermic or Exothermic?	22(f)
(g)	How much heat is consumed/produced in the reaction?	22(g)

23. Answer the following questions about the reaction below. Clearly label and show work in the space provided below, or on a separate sheet of paper.
Hint: 1 Al(NO₃)₃(aq) + 3 NaI(aq) + 75.0kJ → 3 NaNO₃(aq) + 1 AlI₃(s).

(a) What is the limiting reagent if you start with 15.0 grams of NaI and 10.0 grams of $Al(NO_3)_3$?	23(a)
(b) What is the theoretical yield of AlI_3 in grams?	23(b)
(c) How many grams of the excess reagent will be left over?	23(c)
(d) What is the percent yield if you performed the reaction in lab and produced 12.50 grams of AlI_3 ?	23(d)
(e) Is the reaction exothermic or endothermic?	23(e)
(f) How much energy (in Joules) is consumed/produced in the reaction?	23(f)

CHE 101 - Extra Practice - F18

24. Answer the following questions about the reaction below. Clearly label and show work in the space provided below, or on a separate sheet of paper.

 $\label{eq:Hint: 3 Mg(OH)_2(aq) + 2 H_3PO_4(aq) \longrightarrow 6 \ HOH(l) + 1 \ Mg_3(PO_4)_2(s) + 320. \ kJ.$

(a) What is the limiting reagent if you start with 25.0 grams of $Mg(OH)_2$ and 25.0 grams of H_3PO_4 ?	24(a)
(b) What is the theoretical yield in grams of $Mg_3(PO_4)_2$ in grams?	24(b)
(c) How many grams of the excess reagent will be left over?	24(c)
(d) What is the percent yield if you performed the reaction and produced 12.50 grams of $Mg_3(PO_4)_2$?	24(d)
(e) Is the reaction exothermic or endothermic?	24(e)
(f) How much energy (in Joules) is consumed/produced in the reaction? vspace0.1in	24(f)

25. Given the reaction: $H_2SO_4(aq) + 2NaOH(aq) \longrightarrow Na_2SO_4(aq) + 2H_2O + 784 kJ$ 34.7 g of H_2SO_4 was reacted with 75.0 g of NaOH. MW: $H_2SO_4 = 98.09 \text{ g/mol}$, NaOH = 40.00 g/mol, Na₂SO₄ = 142.05 g/mol, and $H_2O = 18.02 \text{ g/mol}$.

(a)	What was the limiting reactant?	25(a)
(b)	Grams H_2SO_4 left:	25(b)
(c)	Grams NaOH left:	25(c)
(d)	Grams Na_2SO_4 left:	25(d)
(e)	Grams H_2O left:	25(e)
(f)	Is the reaction Endothermic or Exothermic?	25(f)
(g)	How much heat is consumed/produced in the reaction?	25(g)

26. Answer the following questions about the reaction of Sodium Iodide with Barium Chloride to produce Sodium Chloride and Barium Chloride. (Clearly label and show work in the space provided below.) $2NaI + BaCl_2 + 200kJ \longrightarrow 2NaCl + BaI_2(s)$

(a) What is the limiting reagent if you start with 50.0 gr and 35.0 grams of $BaCl_2$?	ams of NaI 26(a)
(b) What is the theoretical yield in grams of BaI_2 in gram	ms? 26(b)
(c) How many grams of the excess reagent will be left ov	ver? 26(c)
(d) What is the percent yield if you performed the reaction 15.0 grams of ${\rm BaI}_2?$	on and produced 26(d)
(e) Is the reaction exothermic or endothermic?	26(e)
(f) How much energy is consumed/produced in the react	tion? 26(f)