5. _____

Date: _

[5 pt] 1. Define each variable in the equation PV=nRT and give the standard units for each.

[5 pt] 2. Based on the 4 laws discussed in class and/or the ideal gas law (PV=nRT) answer the following questions with either (Directly Proportional, Inversely Proportional, or Neither.

(a)	Pressure and Volume are:	2(a)
(b)	Volume and Temperature are:	2(b)
(c)	Pressure and Temperature are:	2(c)
(d)	Number of Moles and Pressure:	2(d)
(e)	Pressure and The Gas Constant (R):	2(e)

[3 pt] 3. What are the 6 principal assumptions of the Kinetic-Molecular theory of gases for "Ideal" Gases?

[3 pt] 4. Which 3 assumptions are **NOT** good assumptions for "Real" Gases

[4 pt] 5. Which picture best represents a mixture of two gasses? Explain.

	<u> </u>	<u> </u>
(A)	(B)	(c)

CHE 101 - Homework - Ch 8b

[5 pt]	6. How many mols of gas are in a 15.0 L container with a pressure of 660. m at a temperature of 45.0 °C?	nmHg 6
[5 pt]	7. At what temperature (°C) will 25.2 mols of Xe gas occupy a volume of 64 at a pressure of 732 torr?	5 L 7
[5 pt]	8. How big of a balloon (in L) can you fill you have 15.0 mols of He gas at 25 °C at 100,000. Pa?	8
[5 pt]	9. A compressed air tank carried by scuba divers has a volume of 8.0 L and a of 125 atm at 20. °C. What is the volume of air in the tank (in L) at sea atm, and 0.0 °C?	a pressure 9

 $2\mathrm{Al}(\mathrm{s}) + 6\mathrm{HCl}(\mathrm{aq}) \longrightarrow 2\mathrm{AlCl}_3(\mathrm{aq}) + 3\mathrm{H}_2(\mathrm{g})$

[5 pt] 11. What volume of chlorine gas at 50.0 °C and 3.0 atm will be formed by the reaction 11. _____ of 125.0 grams of F_2 with excess HCl?

 $F_2(g) + 2HCl(aq) \longrightarrow Cl_2(g) + 2HF(aq)$

[5 pt] 12. How may liters of gas (total, add them together) would be formed at 450 °C and 12. _________ 1.00 atm by the explosion of 450.0 grams of ammonium nitrate (NH_4NO_3) ?

 $__NH_4NO_3(s) \longrightarrow __N_2(g) + __H_2O(g) + __O_2(g)$

[5 pt] 13. Using the following reaction, how many grams of TiCl_4 are needed for complete 13. _____ reaction with 155 L of H₂ gas at 435 °C and 795 mm Hg?

 $_$ TiCl₄(g) + $_$ H₂(g) \longrightarrow $_$ TiCl₃(s) + $_$ HCl(g)

[5 pt] 14. The reaction of sodium peroxide (Na₂O₂) with CO₂ is used in space vehicles to 14. ________ remove CO₂ from the air and generate air for breathing. If an astronaut requires 220. L of O₂ a day to survive, how many grams of CO₂ gas must be reacted in order to supply enough oxygen. Assume the space ship is at 1.0 atm of pressure at 25 °C.

$$\underline{Na_2O_2(s)} + \underline{CO_2(g)} \longrightarrow \underline{Na_2CO_3(s)} + \underline{O_2(g)}$$