CHE 101 - Homework - Ch 11a Equilibrium and Reaction Rates

Score:	/50
DCCIC.	, 00

Name: Date:	
Name: Date:	

- [3 pt] 1. Define the term equilibrium. Write a reaction illustrating your definition. What is equal and what is not equal?
- [2 pt] 2. Sketch a picture illustrating what happens to the rate of the forward and reverse reactions as they approach equilibrium. Be sure to label the x and y axis.

[10 pt] 3. Consider the following system at equilibrium:

$$N_2(g) + 3H_2(g) \Longrightarrow 2NH_3(g) + 1531kJ$$

Complete the following table. Indicate changes in concentration of each product and reactant by entering (I)ncrease, (D)ecrease, (N)o change, or a ? for insufficient information to determine.

Stress Applied:	Direction Reaction Shifted	$[N_2]$	$[\mathrm{H}_2]$	$[NH_3]$
${\rm Add}\ {\rm N}_2$				
${\rm Add~NH_3}$				
Decrease Volume				
Increase Temperature				
Add a catalyst				

[10 pt] 4. Consider the following system at equilibrium:

$$3O_2(g) + 271kJ \Longrightarrow 2O_3(g)$$

Complete the following table. Indicate changes in concentration of each product and reactant by entering (I)ncrease, (D)ecrease, (N)o change, or a ? for insufficient information to determine.

Stress Applied:	Direction Reaction Shifted	$[O_2]$	$[O_3]$
${\rm Add}~{\rm O}_2$			
Remove O_3			
Increase Volume			
Decrease Temperature			
Increase Pressure			

[10 pt] 5. Consider the following system at equilibrium:

$$\mathrm{CH_4(g)} + \mathrm{Cl_2(g)} \Longleftrightarrow \mathrm{CH_3Cl(g)} + \mathrm{HCl(g)} + 110\mathrm{kJ}$$

Complete the following table. Indicate changes in concentration of each product and reactant by entering (I)ncrease, (D)ecrease, (N)o change, or a ? for insufficient information to determine.

Stress Applied:	Direction Reaction Shifted	$[CH_4]$	$[Cl_2]$	$[CH_3Cl]$	[HCl]
Remove Cl ₂					
Add HCl					
Increase Pressure					
Decrease Temperature					
Add a catalyst					

CHE 101 - Homework - Ch 11a

[2 pt]	3. In order for a reaction to occur what two things must occur?
[3 pt]	7. What are 4 factors that effect the rate of a chemical reaction? Briefly describe how each controls the rate or a reaction
10 pt]	8. Draw an Energy Diagram for an ENDOTHERMIC reaction for an Uncatalyzed and Catalyzed reaction. Be sure to label:
	 (a) x-axis (b) y-axis (c) Reactants (R) (d) Products (P)

(e) Transition State (TS)(f) Activation Energy (AE)

(g) Catalyzed Activation Energy (CAE) (h) Change in Energy in the reaction (ΔE)