CHE 102 - SG -	- Biochemical	Reactions	- S19
----------------	---------------	-----------	-------

Reaction Type	Reaction	How to Recognize
Substrate Level Phosphoryla- tion (SLP)	$\begin{array}{c} \mathrm{S-PO}_4 + \mathrm{ADP} \longrightarrow \mathrm{S} + \mathrm{ATP} \\ \mathrm{S} \end{array}$	Transfer of a PO_4 from substrate to ATP to form ATP
Transfer	$\mathbf{S} + \mathbf{ATP} \longrightarrow \mathbf{S} - \mathbf{PO}_4 + \mathbf{ADP}$	Transfer of a functional group, generally a PO_4 from ATP added to a molecule.
Redox	Alcohol (O) Aldhyde/Ketone Alkane (O) Alcohol	Many reactions are Redox reactions, look for redox-coenzymes in a reaction. NAD^+ , $NADH$, $NADP^+$, $NADPH$, FAD, and $FADH_2$
	$\begin{array}{c} [R] \\ Aldehyde \xrightarrow{[O]} \\ \hline [R] \end{array} CA$	For all redox reactions you will have to identify what molecules is reduced and what molecule is oxidized.
Dehydrogenation $(-H_2)$	$\begin{array}{rcl} \text{Alkane} & \longrightarrow & \text{Alkene} \\ \text{Alcohol} & \longrightarrow & \text{Alkane} \\ \text{Alcohol} & \longrightarrow & \text{Ketone} \end{array}$	Look for enzymes named "dehydrogenase" (not always present). It usually is also a \underline{redox} reaction.
Hydrogenation $(+H_2)$	Alkene \longrightarrow Alkane	Addition of H_2 across a C=C.
Dehydration (- H_2O)	Alcohol \longrightarrow Alkene	Intermolecular removal of $\rm H_2O$ from an alcohol to form an alkene
Hydration $(+H_2O)$	Alkene \longrightarrow Alcohol	Generally an oxidation reaction.
Hydrolysis $(+{\rm H_2O})$	Thioester \longrightarrow CA + Thiol	Breaks two molecules apart
Isomerization	Same Formula Diff. Structure	Recognize the enzyme "isomerate" or "mutase".
Elimination		Combines several types of reactions into a single mechanism - Dehydrogenation $(\rm -H_2)$ and Dehydration $(\rm -H_2O)$
Addition		Combines several types of reactions into a single mechanism - Hydrogenation $(+\rm H_2)$ and Hydration $(+\rm H_2O)$
Decarboxylation $(-CO_2)$	$\mathrm{R-COO^{-} \longrightarrow R+CO_{2}}$	Loss of a CA acid group to form CO_2
Aldol Condensation	${\rm Ketone} + {\rm Ketone} \longrightarrow {\rm Aldol}$	Only occurs in 1st step of CAC. Two molecules combine to make 1.
Condensation	2 molec. \longrightarrow 1 molec.	Only occurs in 1 specific reaction (step 2 lipogenesis)
$ \begin{array}{c} {\rm Reverse} & {\rm Decarboxylation} \\ {\rm (+CO_2)} \end{array} $	$\mathbf{R} + \mathbf{CO}_2 \longrightarrow \mathbf{R} - \mathbf{COO}^-$	Only happens for 1 specific reaction (step 0 in lipogenesis a cetyl-CoA \longrightarrow maolonyl-CoA)