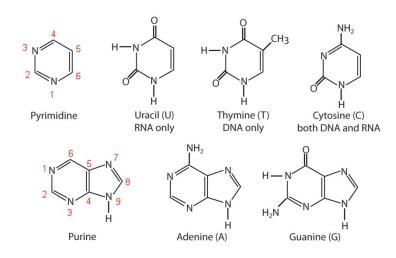
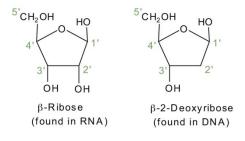
Overview


Nucleic Acids

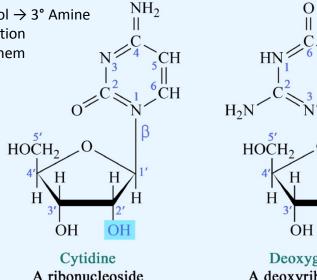
- Structure of DNA/RNA can I draw it or interpret drawings
- DNA Replication can I describe the basic process
- RNA Transcription can I explain role of each type of RNA
- Biosynthesis of Proteins can I explain the basic process
- Miscellaneous Topics could I discuss each one
 - Cancer/Chemotherapy
 - Genetic Engineering
 Human Genome Project
 - Human Genome Project
 - Genetic Code (Codons)

5 Bases

Structure


- Molecules given on cheat sheet
- Can I # the molecules and recognize which N-H group reacts
- Purines/Pyrimidine pairs G/C and A/T or A/U

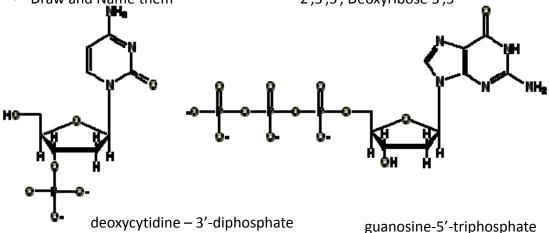
Sugars


Structure

- Molecules given on cheat sheet
- Can I # the molecules and recognize which OH groups react
- Missing 2' OH on deoxyribose

Nucleosides

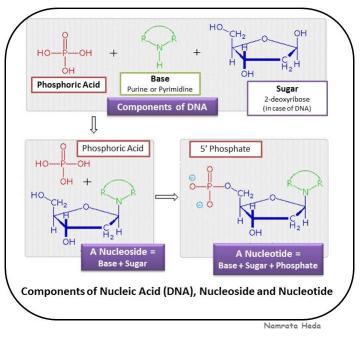
- Given Table 31.1 on cheat sheet
- Base + Sugar
- 2° Amine + Alcohol → 3° Amine
- **Dehydration Reaction**
- Be able to draw them


A ribonucleoside

Deoxyguanosine A deoxyribonucleoside

Nucleotides

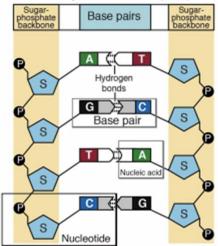
- Given Table 31.1 on cheat sheet
- Base + Sugar + Phosphate
- Phosphate Anhydride Bonds
- Draw and Name them

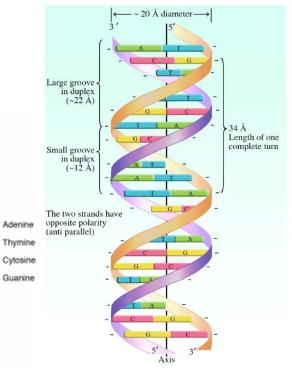

- Dehydration Reaction
- Naming/Abbreviations
- Phosphates can connect to Ribose 2',3',5', Deoxyribose 3',5'

3'-dQMP

S'-dGTP

Parts of Nucleotide

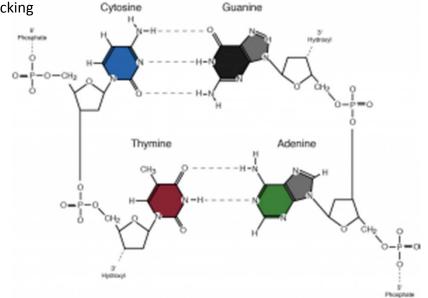

Nucleotide


Sugar

DNA

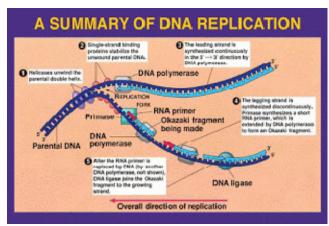
- Draw a small segment
- Double Helix with Bases = rungs
- Held together by Hydrogen Bonds
- Complementary

Deoxyribonucleic Acid (DNA)



Base Pairs

Complimentary


- Hydrogen Bonds
- G/C and T/A
- · Built in Error Checking

Replication

Definition: process by which DNA is duplicated

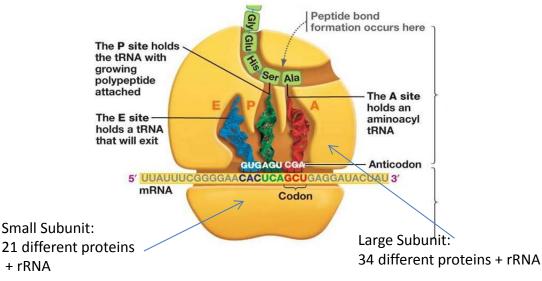
- Complementary nature is key to duplication
- Each new strand is 1 template + 1 new complementary strand
- Strands copied differently
 - Towards the point of unwinding → continuous synthesis
 - Away from the point of unwinding → fragmented synthesis
- Rigorous error checking: 1/Billion error rate

DNA vs RNA

Differences between DNA and RNA

DNA	RNA	
Double Strand	1. Single Strand	
2. Dexoyribos e	2. Ribose	
3. T	3. U	
4. Store Information	4. mRNA/rRNA/tRNA Blueprint/Machinery/Du mp Truck	
5. Unmodified	Unmodified 5. Heavily Modified	

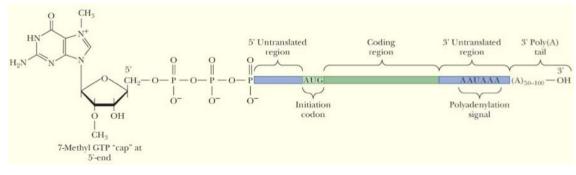
RNA - General


RNA – Summary

- 3 main types
 - rRNA = ribosomal → machinery (80%)
 - mRNA = messenger → blueprint
 - tRNA = transfer → dump truck
- Single Strand
 - U instead of T
- Complimentary to DNA (HB)
- **Heavily Modified**
- Methylation (add CH₃)
 - - Saturation of C=C Isomerization of ribose

rRNA

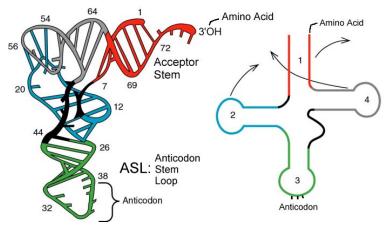
Ribosomal RNA


- 80% of RNA
- Combines with proteins to make ribosomes
- Machinery to synthesis proteins (30-35% rRNA, 60-65% protein)
- Complicated structure (skip)

mRNA

Messenger RNA

- · Carries information from DNA to Ribosome
- Blueprint
- Undergoes some modification
- More than just Blueprint
 - Includes 5' cap group
 - Untranslated regions where ribosome can interact
 - Coding region
 - 3' tail



Allosteric Regulation:

- Transfer
- Dump truck
- Bring AA to Ribosome Interacts with ribosome, AA and mRNA
- Unique cloverleaf shape 3 important regions

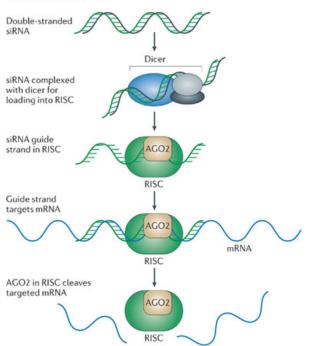
- 1 Acceptor Region binds to AA2,4 Ribosome handles interact with ribosome
- 3 Anticodon region binds to mRNA

RNA

Other Types of

ncRNA (Noncoding RNA)

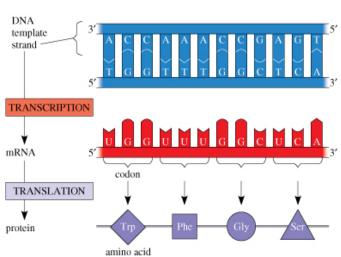
- Control flow of genetic information
- Know 1 example
- Hot new area to research for curing genetic diseases


Туре	Size	Location	Purpose
Micro (miRNA)	20-25	Cytoplasm	Stop translation by blocking ribosomes
Small Nuclear (snRNA)	60- 200	Nucleus	Control post transcription modification
Small Nucleolar (snoRNA)	70- 100	Nucleolus	Control modification of rRNA
Small Interfering (siRNA)	20-25	Cytoplasm	Stop translation by triggering mRNA destruction

siRNA

siRNA

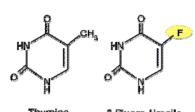
 Stops translation by signaling the destruction of mRNA before it is translated into a protein


a Small interfering RNA

Genetic Code

Genetic Code:

- Given on cheat sheet, just know how to use it
- Understand complementary relationships
 - G/C and A/T/U
- Convert sequences
 - DNA ↔ mRNA
 - mRNA ↔ tRNA
 - DNA \leftrightarrow AA Sequence


Cancer

Cancer:

- Oncogenes: proteins that code for cell growth
- Cancer: uncontrolled/unregulated cell growth/reproduction caused by loss of oncogene regulation
- Tumor-Suppressor Genes: block/reduce cancer by causing apoptosis if cell is damaged
 - 20+discovered for rare cancers
 - Example p53 is inactive in about 50% of cancers
 - Suppression of gene allows cancer to develop
- Apoptosis: cause cell destruction
 - release of cytochrome C from mitochondria activates caspases (digestive enzyme) → breaks apart cell machinery

• Treatments:

- Radiation → kills fast growing cells
- Chemotherapy → kills fast growing cells
- Genetics → activate tumor-suppressing genes
- Example: 5-fluoro-uracile inhibits production of thymine

Human Genome Project

Human Genome Project:

- Heredity is controlled by DNA
- Genetic Diseases effect 8% humans
- Started 1998 → Map 3 billion base pairs
- Finished 2001!

Results:

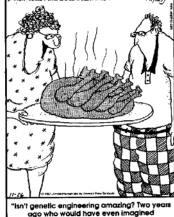
- Codes for 23,000 enzymes but potentially could code for 100,000+ (junk DNA)
- 98% of Genome ≠ code proteins
 - Unknown or no function
 - Junk DNA
 - Regulation
 - Unused/Abandoned genes
- 1000 of genetic tests developed

THE G-NOME PROJECT

Goal:

Cure Genetic Diseases – easier said than done, but some successes

Genetic Engineering

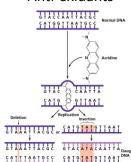

Genetic Engineering

- Laboratory technique for controlling/causing genetic change
- DNA polymerase chain reaction: copies specific genes over and over
- Restriction Endonucleases: split DNA at very specific points
- Insertion: Ability to insert genetic material
- Ligases: covalently bond DNA back together
- Recombinant DNA: DNA whose base pairs have been rearranged to contain new information


Examples:

- Yeast/Bacteria → Insulin, Anemia drugs, Interferon
- Agriculture \rightarrow GMO crops, pesticide resistance

Close to Home By John McPherson



Mutation

Mutation

- Mutation: alteration to DNA that changes genome in child but not parent
 - Good (Superpowers) or Bad (Cancer, diseases)
 - Evolution
- Mutagens: cause genetic damage
 - Ionizing Radiation UV, x-rays, cosmic rays
 - Chemicals
 - Radioactive decay
 - Heavy Metals
 - Viruses
- Anti-oxidants

Examples:

- Cancer
- Superpowers
- Evolution

contains dozens of mutagenic chemicals

both natural sunlight

and tanning beds

Chemicals

NOTICE

CONTAINS GRADE 4
BIOPHASIC MUTAGEN:

medical, dental,

airport security screening

Nitrate and Nitrate
Preservatives
in hot dogs and
other processed meats

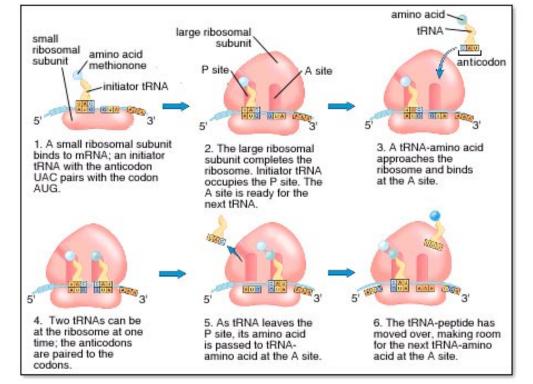
Barbecuing creates mutagenic chemicals in foods

Infectious Agents

Helicobacter pylori bacteria spread through contaminated food

General (I)

Translation – General

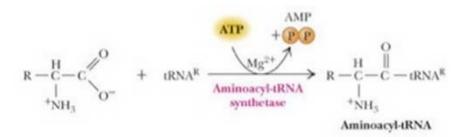

- Dfn: Biosynthesis of Proteins (DNA → RNA → Protein)
 - Step 1: Initialization

Step 0: Preparation

- Step 1: Initialization
 Step 2: Elongation
- Step 3: Termination
- Know the roles of:
 - ne roies oi
 - DNA
 - mRNA, tRNA, rRNA
 - Ribosomes 2 subunits, 3 binding sites (1 mRNA, 2-tRNA)
 - ATP

AA

General (II)


Translation

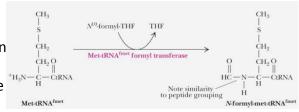
Step 0 - Preparation

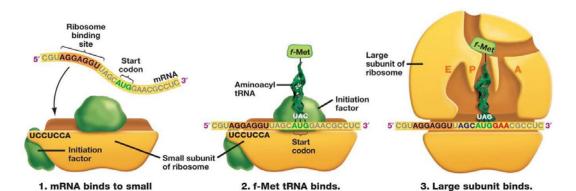
Translation – Step 0 – Preparation

- DNA transcribed to mRNA
- mRNA moves from nucleous to cytoplasm
- mRNA binds to 5+ ribosomes
- tRNA binds to AA (requires an enzyme)

$$AA + tRNA + ATP \rightarrow AA-tRNA + AMP + 2 P_i$$

Translation

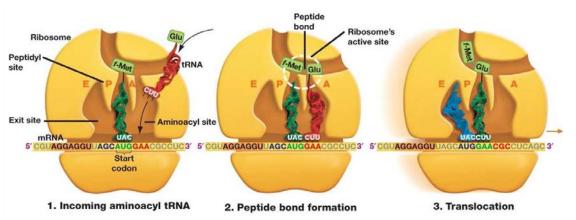

Step 1 - Initiation


Translation - Step 1 - Initiation

• AUG (Met) = start codon

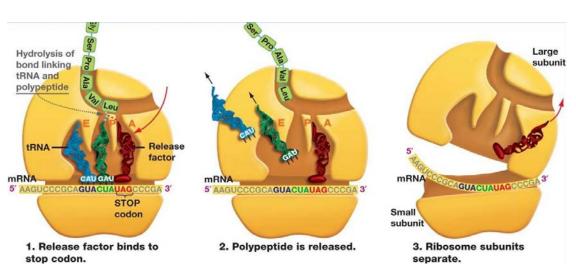
subunit of ribosome.

- Capped to prevent reaction on amine end
- Ribosome binds to mRNA at/near the initiator/start codon



Step 2 - Elongation

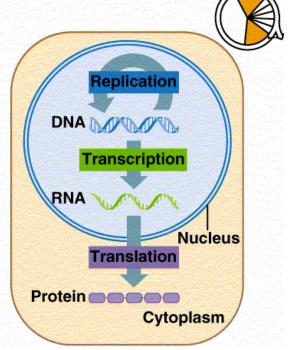
Translation - Step 2 - Elongation


- tRNA HB to mRNA anticodon
- Ribosome makes peptide bond between AA
- tRNA breaks off (to be reused)
- Process repeats....

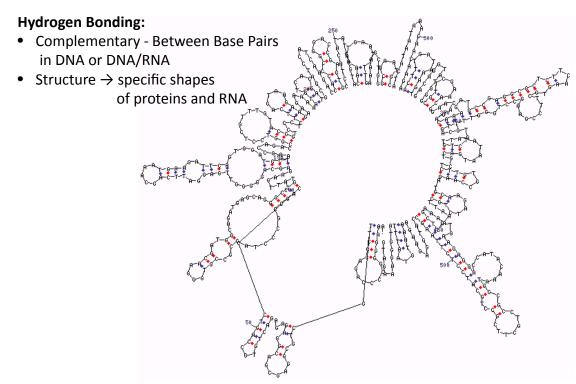
Step 3 - Termination

Translation – Step 3 – Termination

- Elongation stops when a TC/nonsense codon is reached
- Last tRNA is hydrolyzed
- Ribosomes separate and release mRNA and finished protein



Central Dogma


of Biology

Big Picture:

Central Dogma of biology

Hydrogen Bonding

