- 1. Properties of Acids and Bases
- 2. 3 Definitions of acid/base, compare and contrast definitions, give example compounds
 - (a) Arrhenius Acid: solution containing excess H⁺ ions.
 - (b) Arrhenius Base: solution containing excess OH⁻ ions.
 - (c) Bronsted-Lowry Acid: proton (H^+) donor.
 - (d) Bronsted-Lowry Base: proton (H^+) acceptor.
 - (e) Lewis Acid: electron-pair acceptor.
 - (f) Lewis Base: electron-pair donor.
- 3. Know the name and formula of the common acids and bases:
 - (a) Strong Acids: $HClO_4$, HCl, HBr, HI, HNO_3 , H_2SO_4
 - (b) Weak Acids: H_3PO_4 , H_2CO_3 , HF, $HC_2H_3O_2$
 - (c) Strong Bases: NaOH , KOH , $Ca(OH)_2$, $Ba(OH)_2$
 - (d) Weak Bases: NH₃
- 4. Reactions DD and SD
 - (a) Acid + Metal \longrightarrow H₂(g) + Salt (HNO₃ exception)
 - (b) Acid + Base \longrightarrow Salt + H₂O
 - (c) Acid + Metal Oxide \longrightarrow Salt + H₂O
 - (d) Acid + Metal Carbonate (CO₃) \longrightarrow Salt + H₂O + CO₂
- 5. Electrolytes: definition, typical compounds, examples of each, effect on colligative properties.
 - (a) Strong Electrolyte: 100% dissociation, (\rightarrow), strong acids, strong bases, soluable ionic compounds.
 - (b) Weak Electrolyte: <10% dissociation, (\implies), weak acids, weak bases.
 - (c) Nonelectrolyte: 0% dissociation (does not form ions), organic molecules
- 6. Dissociation and Ionization of Electrolytes
 - (a) Process of dissociation (recall, like dissolves like)
 - (b) Figure 15.2
- 7. Writing formula (unionized) equations, total ionic equations and net ionic equations.
 - (a) Formula equation: standard equation
 - (b) Total ionic equation: shows form predominantly present
 - i. Strong Electrolytes shown as ions (SA, SB, soluable ionic compounds)
 - ii. Weak Electrolytes shown as molecules (WA, WB, molecular compounds)
 - iii. Precipitates (insoluable ionic compounds and Gases shown as molecules
 - (c) Net ionic equation: shows only species that have reacted (undergone a chemical change), and excludes spectator ions
- 8. Autoionization of water (it behaves as both an acid and a base).

- 9. pH scale, and calculations involving pH.
 - (a) Identify acidic, basic, and neutral conditions. (Figure 15.4 and Table 15.4)

- (b) Convert between $[H^+]$ and pH (pH = -log $[H^+]$ and $[H^+] = 10^{-pH}$)
- (c) $pOH = -log[OH^-],$
- (d) Convert between $[H^+]$, $[OH^-]$, pH, and pOH.
- (e) pH + pOH = 14, $[H^+][OH^-] = 1 \times 10^{14}$
- 10. Titrations/Neutralization reactions
 - (a) Neutralization is when [Acid]=[Base]
 - (b) Problems Ex. 15.4-15.6