- 1. Heating curve for water (Figure 13.7)
 - (a) Meaning of sloped and straight parts of the graph. Label axis.
 - (b) Freezing point, Melting point, Boiling point
 - (c) Heat of Fusion: Energy required to convert 1 gram of ice at 0 °C to water at 100 °C. Water = 335 J/g
 - (d) Heat of Vaporization: Energy required to convert 1 gram of water at 100 °C to steam at 100 °C. Water = 2.26 kJ/g
 - (e) Phase transitions:
 - i. Solid $\stackrel{\text{Melting}}{\longleftarrow}$ Liquid
 - ii. Liquid $\frac{\text{Evaporation}}{\text{Condensation}}$ Gas
 - iii. Solid $\stackrel{\text{Sublimation}}{\longleftarrow}$ Gas
- 2. Calculate energy required to move from one state of matter to another and to change temperatures (Ex 13.1 and 13.2)
 - (a) Energy required to heat an object: $q = ms\Delta T$ or heat = (mass)(specific heat)(change in temp)
 - (b) Energy required to change phase. $q = m\Delta H$ or heat = (mass)(Heat of Fusion or Vaporization)
- 3. Intermolecular Forces:
 - (a) General Properties
 - i. Intermolecular vs Intramolecular
 - ii. Attractive force between molecules
 - iii. Weak compared to covalent bonds (41 kJ/mol to vaporize vs. 400 kJ/mol to break all OH bonds))
 - iv. Effect on physical properties (Boiling point, Melting point, Vapor Pressure)
 - (a) London Dispersion Forces:
 - i. Attractive force between all molecueles
 - ii. Proportional to the size/mass of a molecule
 - iii. Due to instantaneous polarization and formation of dipoles in nonpolar molecules
 - iv. Relative Strength: i 1-10 kJ/mol (weakest IMF)
 - v. Be able to draw an example
 - (b) Dipole-Dipole:
 - i. Occurs between polar molecules
 - ii. Attraction due to seperation of partial charges (electrostatic)
 - iii. Relative Strength: 3-4 kJ/mol
 - iv. Be able to draw an example
 - (c) Hydrogen bonding (definition and effect on physical properties of compounds)
 - i. Requirements (H bonded to N, O, F and polar molecules)
 - ii. Effect of hydrogen bonding on physical properties
 - iii. Relative Strength: 10-40 kJ/mol
 - iv. Be able to draw an example
 - (d) Ionic:
 - i. Between full positive and negative charges (ie electrons were gained or lost)
 - ii. Metal-Nonmetal

- iii. Electrostatic
- iv. Relative Strength: 10-50 kJ/mol(strongest IMF)
- v. Be able to draw an example
- 4. Vapor Pressure and Boiling Point Know trends and explainations for them
 - (a) Relationship between vapor pressure, boiling point, and atmospheric pressure
 - (b) Figure 13.6.
 - (c) Vapor Pressure
 - i. VP \propto Temperature
 - ii. $VP \propto 1/Boiling Point$
 - iii. $VP \propto 1/IMF$
 - iv. VP is independent of volume of liquid or container
 - (d) Boiling Point
 - i. BP \propto IMF
 - ii. BP $\propto 1/VP$
 - iii. BP \propto Atmospheric Pressure
 - iv. BP $\propto 1/\text{Elevation}$
- 5. Know the following items not covered in lecture:
 - (a) Surface tension
 - (b) Capillary action
 - (c) Meniscus
- 6. The chapter review in the book is useful