1. What is the molecular weight of HC$_2$H$_3$O$_2$

2. What is the molecular weight of Al(C$_2$H$_3$O$_2$)$_3$

3. What is the molecular weight of Sc$_2$(C$_2$O$_4$)$_3$

4. What is the molarity of a solution made from 25.0 grams of Mg(OH)$_2$ dissolved in 175.0 mL of water?

5. How many grams of HCl are required to make 105.0 mL of 2.75 M HCl?

6. Given the reaction: 2 NaOH(aq) + 1 H$_2$SO$_4$(aq) \rightarrow 1 Na$_2$SO$_4$(aq) + 2 H$_2$O(l)
 how many grams of Na$_2$SO$_4$ can be produced from 25.0 grams of NaOH.

7. What is the molarity of a solution made from 25.0 grams of NaOH dissolved in 350.0 mL of water?

8. How many grams of NaOH are required to make 250.0 mL of 1.25 M NaOH?

9. 27.5 mL of 0.35M NaOH is how many grams of NaOH?

10. Jay performed a titration and noted that 225.0 mL of 0.85 M NaOH completely neutralized 175 mL of H$_2$SO$_4$. What is the Molarity of the H$_2$SO$_4$ solution? (Hint: 2NaOH(aq) + H$_2$SO$_4$(aq) \rightarrow 2HOH(l) + Na$_2$SO$_4$(aq) + heat.

11. Jay performed a titration and noted that 15.0 mL of 8.0 M NaOH completely neutralized an unknown volume of 6.5 M H$_2$SO$_4$. What is the volume (in mL) of the H$_2$SO$_4$ solution? (Hint: 2NaOH(aq) + H$_2$SO$_4$(aq) \rightarrow 2HOH(l) + Na$_2$SO$_4$(aq) + heat.

12. How many grams of HCl are required to make 750.0 mL of 3.000 M HCl?

13. What is the molarity of a solution made from 15.0 grams of AgNO$_3$ dissolved in 275.0 mL of water?

14. Answer the following questions about the given the reaction:
 2 H$_3$PO$_4$(aq) + 3 Mg(OH)$_2$(aq) \rightarrow 1 Mg$_3$(PO$_4$)$_2$(aq) + 6 H$_2$O(l) + 12.0kJ
 (a) How many grams of Mg$_3$(PO$_4$)$_2$ can be produced from 125.0 grams of Mg(OH)$_2$.
 (14a)

 (b) How many grams of H$_3$PO$_4$ are required to react with 11.0 grams of Mg(OH)$_2$.
 (14b)

15. Bob performed a titration and noted that 75.0 mL of 0.65 M Mg(OH)$_2$ completely neutralized 250.0 mL of HCl. What is the Molarity of the HCl solution?
 Hint: 1 Mg(OH)$_2$(aq) + 2 HCl(aq) \rightarrow 2 HOH(l) + MgCl$_2$(aq).

16. How many mL of 0.55 M NaOH are required to neutralize 195.0 mL of 1.87 M H$_2$SO$_4$?
 Hint: 1 H$_2$SO$_4$(aq) + 2 NaOH(aq) \rightarrow 2 HOH(l) + 1 Na$_2$SO$_4$(aq).

17. Todd performed a titration and noted that 115.0 mL of 0.85 M Mg(OH)$_2$ completely neutralized 135.0 mL of H$_3$PO$_4$. What is the Molarity of the H$_3$PO$_4$ solution?
 Hint: 3 Mg(OH)$_2$(aq) + 2H$_3$PO$_4$(aq) \rightarrow 6 HOH(l) + Mg$_3$(PO$_4$)$_2$(s).

18. How many mL of 3.25 M Mg(OH)$_2$ are required to neutralize 240.0 mL of 1.25 M H$_3$PO$_4$?
 Hint: 3 Mg(OH)$_2$(aq) + 2 H$_3$PO$_4$(aq) \rightarrow 6 HOH(l) + Mg$_3$(PO$_4$)$_2$(s).

19. Jay is baking apple pies using the following recipe: 3 Apples + 2 cups sugar + 5 teaspoons Cinnamon + 4 cups Flour \rightarrow 2.5 apple pies. In my cupboard I have the following: 24 apples, 10 cups of Sugar, 30 teaspoons of Cinnamon and 25 cups of Flour. Answer the following questions:

 (a) What is the limiting ingredient?

 (b) Amount of Apples left:

 (c) Amount of Sugar left:

 (d) Amount of Cinnamon left:

 (e) Amount of Flour left:

 (f) Number of pies made:

20. Given the reaction: 3 Mg(OH)$_2$(aq) + 2 H$_3$PO$_4$(aq) \rightarrow Mg$_3$(PO$_4$)$_2$(aq) + 6 HOH + 543 kJ
 25.0 g of Mg(OH)$_2$ was reacted with 50.0 g of H$_3$PO$_4$. MW: Mg(OH)$_2$ = 58.3258 g/mol, H$_3$PO$_4$ = 97.9937 g/mol, Mg$_3$(PO$_4$)$_2$ = 262.87 g/mol, and HOH = 18.0158 g/mol.

 (a) What was the limiting reactant?

 (b) Moles Mg(OH)$_2$ left:

 (c) Moles H$_3$PO$_4$ left:

 (d) Moles Mg$_3$(PO$_4$)$_2$ left:

 (e) Moles HOH left:

 (f) Is the reaction Endothermic or Exothermic?

 (g) How much heat is consumed/produced in the reaction?
21. Given the reaction: \(2 \text{Al(OH)}_3(aq) + 3 \text{H}_2\text{SO}_4(aq) \rightarrow \text{Al}_2(\text{SO}_4)_3(s) + 6 \text{HOH} + 115\text{kJ} \)

MW: \(\text{Al(OH)}_3 = 77.97 \text{ g/mol}, \text{H}_2\text{SO}_4 = 98.09 \text{ g/mol}, \text{Al}_2(\text{SO}_4)_3 = 342.11 \text{ g/mol}, \) and \(\text{H}_2\text{O} = 18.02 \text{ g/mol} \).

(a) What was the limiting reactant?
(b) Moles \(\text{H}_2\text{SO}_4 \) left:
(c) Moles \(\text{Al(OH)}_3 \) left:
(d) Moles \(\text{Al}_2(\text{SO}_4)_3 \) left:
(e) Moles \(\text{H}_2\text{O} \) left:
(f) Is the reaction Endothermic or Exothermic?
(g) How much heat is consumed/produced in the reaction?

22. Given the reaction: \(2 \text{C}_2\text{H}_6 + 7 \text{O}_2 \rightarrow 4 \text{CO}_2 + 6 \text{H}_2\text{O} + 75 \text{kJ} \)

MW: \(\text{C}_2\text{H}_6 = 30.07 \text{ g/mol}, \text{O}_2 = 32.00 \text{ g/mol}, \text{CO}_2 = 44.01 \text{ g/mol}, \) and \(\text{H}_2\text{O} = 18.02 \text{ g/mol} \).

(a) What was the limiting reactant?
(b) Moles \(\text{O}_2 \) left:
(c) Moles \(\text{C}_2\text{H}_6 \) left:
(d) Moles \(\text{CO}_2 \) left:
(e) Moles \(\text{H}_2\text{O} \) left:
(f) Is the reaction Endothermic or Exothermic?
(g) How much heat is consumed/produced in the reaction?

23. Answer the following questions about the reaction below. Clearly label and show work in the space provided below, or on a separate sheet of paper.

\[\text{Hint: } 1 \text{ Al(NO}_3)_3(aq) + 3 \text{ NaI(aq)} + 75.0\text{kJ} \rightarrow 3 \text{ NaNO}_3(aq) + 1 \text{ AlI}_3(s) \]

(a) What is the limiting reagent if you start with 15.0 grams of NaI and 10.0 grams of Al(NO\(_3\))\(_3\)?
(b) What is the theoretical yield of AlI\(_3\) in grams?
(c) How many grams of the excess reagent will be left over?
(d) What is the percent yield if you performed the reaction in lab and produced 12.50 grams of AlI\(_3\)?
(e) Is the reaction exothermic or endothermic?
(f) How much energy (in Joules) is consumed/produced in the reaction?
24. Answer the following questions about the reaction below. Clearly label and show work in the space provided below, or on a separate sheet of paper.

\[3 \text{Mg(OH)}_2(\text{aq}) + 2 \text{H}_3\text{PO}_4(\text{aq}) \rightarrow 6 \text{HOH}(\text{l}) + 1 \text{Mg}_3(\text{PO}_4)_2(\text{s}) + 320. \text{kJ} \]

(a) What is the limiting reagent if you start with 25.0 grams of Mg(OH)$_2$ and 25.0 grams of H$_3$PO$_4$?
(b) What is the theoretical yield in grams of Mg$_3$(PO$_4$)$_2$ in grams?
(c) How many grams of the excess reagent will be left over?
(d) What is the percent yield if you performed the reaction and produced 12.50 grams of Mg$_3$(PO$_4$)$_2$?
(e) Is the reaction exothermic or endothermic?
(f) How much energy (in Joules) is consumed/produced in the reaction?

25. Given the reaction: \[\text{H}_2\text{SO}_4(\text{aq}) + 2 \text{NaOH}(\text{aq}) \rightarrow \text{Na}_2\text{SO}_4(\text{aq}) + 2 \text{H}_2\text{O} + 784 \text{kJ} \]

34.7 g of H$_2$SO$_4$ was reacted with 75.0 g of NaOH. MW: H$_2$SO$_4$ = 98.09 g/mol, NaOH = 40.00 g/mol, Na$_2$SO$_4$ = 142.05 g/mol, and H$_2$O = 18.02 g/mol.

(a) What was the limiting reactant?
(b) Grams H$_2$SO$_4$ left:
(c) Grams NaOH left:
(d) Grams Na$_2$SO$_4$ left:
(e) Grams H$_2$O left:
(f) Is the reaction Endothermic or Exothermic?
(g) How much heat is consumed/produced in the reaction?

26. Answer the following questions about the reaction of Sodium Iodide with Barium Chloride to produce Sodium Chloride and Barium Chloride. (Clearly label and show work in the space provided below.)

\[2\text{NaI} + \text{BaCl}_2 + 200\text{kJ} \rightarrow 2\text{NaCl} + \text{BaI}_2(\text{s}) \]

(a) What is the limiting reagent if you start with 50.0 grams of NaI and 35.0 grams of BaCl$_2$?
(b) What is the theoretical yield in grams of BaI$_2$ in grams?
(c) How many grams of the excess reagent will be left over?
(d) What is the percent yield if you performed the reaction and produced 15.0 grams of BaI$_2$?
(e) Is the reaction exothermic or endothermic?
(f) How much energy is consumed/produced in the reaction?